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Abstract

This paper has been written as part of the course ”Guided Research Mathematics II” at International
University Bremen during the Spring Semester 2005 under the supervision of Professor Peter Oswald. First
we give a short introduction to subdivision algorithms and associated notions, which are relevant for the
understanding of the investigated questions in this paper. The main question is the stability analysis
for subdivision schemes. For linear subdivision this problem has been solved and we are concerned with
possible ways, how to deal with stability properties of nonlinear subdivsion schemes. We focus on the case
of subdivision in 1D. An explicit criterion for stability of nonlinear subdivision is proven and investigated
numerically for a suitable way to apply this result to median subdivision. In addition we propose a way how
to linearize median subdivision in a special case.
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1 Introduction

The basic idea of subdivision can be roughly summarized as follows:

Given a (coarse) set of data, a subdivision scheme produces a refined data set by the repeated application of
a set of subdivision rules.

Given a set of data points (xi, yi) in R2 and trying to refine this set of points can be related to finding a
function f s.t. f (xi) = yi for all i, i.e. an interpolation problem. A typical situation would be to fix a regular
refinement rule for xi. For example a dyadic grid would have the following refinement rule:

xj+1
2k = xj

k and xj+1
2k+1 =

xj
k + xj

k−1

2
(1)

This means at each refinement step j we obtain elements of the refined data j +1 by taking midpoints. The
lower subscript k signals the ordering of the points in a sequence. Then we only need a rule, how to assign new
y-values to newly inserted nodes in x-direction. Formally the framework can be defined as being given a sequence
of y-values, which we will denote by v ∈ l∞ (Z), where lower subscripts will denote the respective elements of
v as above, e.g. vk is the element in the sequence with index k. Upper subscrips like vj formally denote the
subdivision level, i.e. the refined data set after j subdivision steps; v0 denotes the initial data/sequence. Then
one defines a map S:

S : l∞ (Z) → l∞ (Z) (2)
Svj = vj+1 (3)

The map S might be linear or nonlinear. If S is a nonlinear map then it might be expressible as several linear
rules depending on the data v. In this case a data dependent subdivision rule is an operator valued function
S, which associates to each v ∈ l∞ (Z) a linear operator S (v). Usually such rules are also called quasi-linear.
A subdivision scheme is called interpolatory if for all j one has vj

k ∈ vj+1. A scheme, which does not have
this property is called approximating. The limit of the data refinement process is written as v∞, which is the
following limit:

lim
j→∞

S ◦ S ◦ S ◦ . . .︸ ︷︷ ︸
j−times

v0 := S∞v0 = v∞ (4)

Note that this framework of a fixed grid in x-direction and an operator S for the sequence of y-values is not the
most general case of a subdivision scheme in one dimension. Clearly one could think of refining the x-values as
well or dropping the restriction that f is a function and consider the case of curves. Note that in this case one
should assume that f will be a 1-manifold. The reader should be aware of the fact that even in these cases the
subdivision scheme is most often simply denoted by S, but is then not given in general by a regular refinement
of the grid and a map from l∞ (Z) to l∞ (Z). In this paper the main focus is on subdivision schemes for the
case of functions on regular grids.

Note that whereas in interpolation problems, one e.g. uses splines and looks for a way to insert new control
points to improve the spline, subdivision is based on the fact that the sequence of control points as such
converges to an actual limit curve making the machinery of splines superfluous. Therefore one needs a notion
of convergence: Given the inital data/control points v0 and the subdivision rule S, consider the function f j ,
which is the linear interpolation of the points vj . If there exists a function f such that for any ε > 0 ∃j0 ∈ N
s.t. for all j > j0 and any x ∣∣f (x)− f j (x)

∣∣ < ε (5)

then f j converges uniformly, which implies f being continuous. The smoothness of the limit curve is one of
the major properties. One tries to check whether f ∈ Cs (R) for some s. Note that if 0 < s ≤ 1, then a function
is called Hölder continuous if there exists a constant C > 0 s.t. for all x, y

|f (x)− f (y)| < C |x− y|s (6)
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In this case s is also called the Hölder exponent. Convergence results will only be stated and not proven in
this paper as the focus is to derive stability properties of subdivision schemes.

Some more vocabulary and definitions are necessary. Let N be a fixed integer, then a subdivision rule
S reproduces polynomials of order N if for any polynomial P of degree less or equal to N there exists a
polynomial Q of degree at most N s.t. P −Q has degree N − 1 and one has:

Sp = q where pk = P (k) and qk = Q

(
k

2

)
(7)

Roughly speaking, this means that the space of polymials of degree up to N is invariant under the subdivision
rule. Also one has to recall the n-th order forward finite difference operator:

(4nv)k =
n∑

m=0

(−1)n−m

(
n

m

)
vk+m (8)

In addition to the notation ∆k it is common to use Dk for the same operator. In general it has been shown
(see [5]) that polynomial reproduction of order N for a linear subdivision scheme implies the existence of
an associated difference scheme for each order k = 1, . . . , N + 1. More precisely, there exist subdivision
schemes Sk : l∞ (Z) → l∞ (Z) such that ∆k (Sv) = Sk

(
∆kv

)
. We define the usual norm for the space of

bounded sequences v = {vk}k∈Z

‖v‖l∞ = sup
k
|vk| (9)

In addition to this notation, if S is a map then ‖.‖l∞ denotes the associated operator norm:

‖S‖l∞ = sup
x∈l∞

{‖Sx‖l∞ : ‖x‖l∞ = 1} (10)

Also ‖.‖L∞ is the standard supremum norm on the function space L∞. Note that all norms in the remaining
sections are infinity-norms and since it is clear from the context if an operator norm, a norm on sequences or a
norm on functions is used we abbreviate ‖.‖L∞ = ‖.‖ and ‖.‖l∞ = ‖.‖.

2 Linear Subdivision

If S = (sij) is a linear map, the analysis of the subdivision scheme simplifies significantly. First one notes that
S is a bi-infinite matrix as it is an endomorphism on l∞ (Z). It is reasonable to impose a locality condition on
S by requiring for any fixed j:

sij = 0 for |c · j − i| ≥ L for some (small) finite L ∈ N (11)

where c is a constant depending on the subdivision scheme. Based on the spectral radius ρ (Slocal) = maxi|λi|
of S one can then decide if the scheme converges. In this case λi denote the eigenvalues of a finite matrix Slocal

since the analysis of convergence can be reduced to a finite neighborhood of one point as subdivision scheme
obeys a locality condition as described above. Basically the results of this analysis are that by checking the
spectral radius of a local part of S, convergence and stability for a linear subdivision scheme can be verified.
For the technical details of the proofs see [3], [14] or [12].

Example 2.1. Consider the 4-point scheme, which is an interpolatory subdivision scheme. It is used for the
subdivision of curves or the refinement of 2-D data. One determines new points by considering 4 points and
inserting a new point based on the weights:

− 1
16

,
9
16

,
9
16

,− 1
16

(12)

Note that in this case both coordinates of points x and y are refined according to the given weights. These
coefficients are also sometimes called the (subdivision) mask. Since the scheme is interpolatory, one has
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Figure 1: Four-point subdivision for on a dyadically refined grid

vj
k = vj+1

2k . This means the points remain as even-indexed points, once they have been fixed. The odd entries
are determined by the weights above to yield:

vj+1
2k+1 = − 1

16
vj

k−1 +
9
16

vj
k +

9
16

vj
k+1 −

1
16

vj
k+2 (13)

Clearly one can write this in matrix form. One also notices that the entries in each row sum to 1, which implies
S1 = 1. This property is equivalent to polynomial reproduction of constants and to affine invariance. Affine
invariance simply means that e.g. translating points first and then applying the subdivision rule or first applying
the subdivision rule and then translating the points yield the same result. Using these facts together with an
analysis of the spectral radius of Slocal yields that the 4-point scheme converges uniformly to a C1 limit curve
and is stable.

One can also transfer the idea of the four-point scheme to the easier setting of dyadically refining a grid in x-
direction and using the subdivision mask for the y-coordinate only. Figure 2 shows an example of this procedure.

If a linear subdivision scheme converges then we have a relation of the form ‖Sjv‖ ≤ C‖v‖ for all j with a
constant C. For two sequences v and ṽ it follows by linearity of S that:

‖v∞ − ṽ∞‖ ≤ C‖v0 − ṽ0‖ (14)

The relation (14) is the fundamental idea, which motivates this paper. One asks, whether the following holds
or not: ’Small’ deviations in the intial data induce only ’small’ deviations in the limit.

Note that equation (14) confirms exactly this property for linear subdivision schemes. One should note
that linearity is the key to directly conclude that a result for one sequence implies the same relation for two
sequences. It turns out that for nonlinear subdivision the stability analysis is more complicated.

3 Quasilinear Subdivision

3.1 Basic Theory

Recall that quasilinear subdivision schemes are based on a family of linear maps S(v), which is dependent on
the data v. Note that we can view S(v) either as a linear map on a sequence space or as the result of an operator
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associating to a sequence v a linear map S(v). The analysis can be based on similar techniques as for linear
schemes and is developed in detail in [1]. Instead of analyzing the spectral radius one now analyzes the joint
spectral radius ρ∞ (S) defined as:

ρ∞ (S) = lim
j→∞

sup sup(v0,...,vj−1)∈(l∞(Z))j‖S
(
vj−1

)
. . . S

(
v0
)
‖1/j (15)

In the case of linear subdivision, this is just the usual spectral radius of the matrix S. Furthermore a data-
dependent subdivision operator S (v) is called bounded if ∃B > 0 s.t. ∀v ∈ l∞ (Z) one has ‖S (v) ‖ ≤ B.

The notion of polynomial reproduction carries over in the obvious fashion to require in equation (7) to hold
for all v ∈ l∞ (Z) and S (v) instead of S. Also one needs to have for many results that the quasilinear scheme
is (Lipschitz) continuously dependent on data, i.e. ∀v, w ∈ l∞ (Z) the subdivision operators S (v) and
S (w) satisfy

‖S (v)− S (w) ‖ ≤ C‖v − w‖ (16)

where C > 0 depends in a non-increasing way on max {‖v‖, ‖w‖}. Then under the hypothesis of polynomial
reproduction and bounds on the joint spectral radii of the associated difference schemes one can derive the
convergence of the scheme and an upper bound for the smoothness class of the limit function.

In general, a subdivision rule is called stable if ∃C > 0 s.t. ∀v0, w0 ∈ l∞ (Z) the following inequality holds:

‖v∞ − w∞‖ ≤ C‖v0 − w0‖ (17)

where one regards v∞ and w∞ as functions with the appropiate supremum norm L∞.

The following theorems have been proven in [1], here only the result for the smoothness of the limit function
will be given. For the stability result we will give the idea of the proof as it is one standard technique, how to
prove the stability of a subdivision scheme.

Theorem 3.1. Let S be a data dependent subdivision rule, which reproduces polynomials up to degree N . If
the rule for the differences satisfies ρ∞ (Sn+1) < 2−n for some n ∈ {0, . . . , N}, then the quasilinear subdivision
rule based on S is uniformly convergent and the limit function S∞v0 is Cs for all s < logρ∞(Sn+1)

log2 .

Note that one has implicitly used a lemma in the statement, which says that polynomial reproduction for
quasilinear subdivision also implies existence of associated schemes for the differences as for linear rules. This
illustrates that the theory for quasilinear schemes is a generalization for the linear theory. For the stability of
quasilinear subdivision schemes one has the following result:

Theorem 3.2. Let S be a quasilinear subdivision rule, which reproduces constants. Assume that S is continu-
ously dependent on data and that ρ∞ (S1) < 1. Then for all initial data v0 and ṽ0 it follows ‖S∞v0 −S∞ṽ0‖ ≤
C‖v0 − ṽ0‖, where C depends in a continuous non-decreasing way on max

{
‖v0‖, ‖ṽ0‖

}
.

Proof. (sketch) Note that it suffices to prove the theorem for ‖vj − ṽj‖ with constants uniform in j and then
take the limit j →∞. Define sequences αj := ‖vj − ṽj‖ and βj = ‖∆vj −∆ṽj‖.

Get an upper bound on the sequences for each j, which will turn out in this case to be αj ≤ αj−1 +Dβj and
βj ≤ Cρj

(
αj−1 + . . . + α0

)
where C and D are constants. This is the key step, which is a standard example

for the required calculations. The goal is a bound on the behaviour of the differences of two sequences, which
are initially ’close-by’ in terms of the initial difference plus a term involving the differences ’∆’ with growth
limited by a constant ρj at the j-th step, which gives a geometric series in the limit and so a fixed bound. This
theme will occur again throughout this paper.

Now one can show an inequality for αj , namely ‖∆nvj‖ ≤ 2−n‖∆nvj−1‖ + D‖∆n+1vj‖ for all n < N ,
where N is the polynomial reproduction. This proceeds by showing first that

(
∆nvj−1

)
k

can be expressed as a
linear combination of elements of ∆nvj , where the coefficients in the linear combination are just from a local
(bounded) stencil around the index 2k. Then one can simply write out the desired estimate and collect terms,

6



where the finite number of coefficients from the linear combination yields the constant D > 0.

The main tools to show the result for the sequences βj involves using the continuous dependence on data
‖S1 (v) − S1 (ṽ) ‖ ≤ C1‖v − tildev‖ of the difference scheme and its boundedness, which follow from the same
properties for S. Here C1 is a constant. The main complication is derive from this basic properties a contraction
property of the form ‖∆n+1vj+1−∆n+1ṽj+1‖ ≤ ρj‖ ”terms involving only vj” ‖, where ρ < 1 gives a contraction
and is related to the subdivision operator, which is particularly easy in this case as one can generalize the spectral
radius approach to the joint spectral radius. Now apply a contraction argument for ρj as ρj < 1.

The proof contains a general strategy, which has turned out to be useful in the analysis of subdivision
schemes in general. Having polynomial reproduction one first constructs a scheme for the differences themselves
and then uses estimates for each subdivision step to derive a contraction property. This idea is applicable to
nonlinear schemes, which are not quasilinear as well. We are going to show this in detail (see Theorem 7.1) as
one main result of this paper.

3.2 ENO

This quasilinear method is based on esentially non-osciallatory (ENO) prediction techniques. The ENO tech-
nique is a subdivision algorithm for functions. Given the data vj on some level j as real numbers vj

k ∈ R,
one considers them as values of a function v on a dyadic grid Γj =

(
2−jk

)
k∈Z; in particular one may write

v
(
2−jk

)
= vj

k. The scheme is interpolatory and the points remain as even-indexed vj+1
2k = vj

k. Then one
associates to each k a so-called prediction stencil Sr (k) of length M , where r ∈ Z defines the position of the
stencil w.r.t. k:

Sr (k) =
{
(k − r) 2−j , . . . , (k − r + M − 1) 2−j

}
(18)

Now one uses the function values (v (γ))γ∈Sr(k) to find by Lagrange interpolation the unique polynomial pr of
degree M , which interpolates v on the stencil points. The odd-indexed points are defined as:

vj+1
2k+1,r = pr

(
(2k + 1) 2−j

)
(19)

One obtains a data-dependent subdivision scheme S (v); note that r can still be chosen for each k. The choice
of r is related to the goal of choosing the least osciallatory polynomial pr in a neighborhood of

(
2−jk, vj

k

)
. This

is usually done by a fixed numerical criterion. As an example, the masks for a cubic interpolation polynomial
(M = 4) are given below for r = 0, 1, 2:

vj+1
2k+1,0 = − 5

16
vj

k +
15
16

vj
k+1 −

5
16

vj
k+2 +

1
16

vj
k+3

vj+1
2k+1,1 = − 1

16
vj

k−1 +
9
16

vj
k +

9
16

vj
k+1 −

1
16

vj
k+2 (20)

vj+1
2k+1,2 = − 1

16
vj

k−2 −
5
16

vj
k−1 +

15
16

vj
k +

5
16

vj
k+1

It is interesting to note that the case r = 1 is just the four-point scheme as described above as an example for
a linear interpolation scheme. Once the r is fixed for each k one simply drops the r index and has vj+1

k,r = vj+1
k .

3.3 WENO

The weighted-ENO subdivision builds upon the principles of ENO, but does not only use one of the stencils,
but one uses a convex combination of the refined values for different stencils:

vj+1
k =

M−1∑
r=0

αrv
j+1
k,r (21)

with αr ≥ 0 and
M−1∑
r=0

αr = 1
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A choice for the coefficients αr is developed in [13]. WENO is introduced since the ENO scheme has undesirable
properties with respect to the stability of stencil selection, i.e. a small perturbation in the initial data can cause
a different stencil to be selected, which causes the scheme to be no longer continuously dependent of data. This
makes the ENO subdivision algorithm unstable as a result.

But for the analysis of WENO the general theory for quasilinear subdivision applies as developed in [1].
In particular the limit function of a WENO subdivision is bounded and belongs to Cs for s < log(9/16

√
2)

log2 ≈
0.6601449. Stability follows from the fact that the WENO scheme is continuously dependent on data, which is
not true for the ENO scheme.

4 A Note on Multiresolution

Having defined subdivision for elements in the sequence space l∞ (Z) one primary application is the construction
of an associated multiresolution transform. Assume that we are given v as a continuous function on R.

One first introduces a grid Γj of R, where the index j signals that the grid will be refined on different levels,
e.g. one could take a dyadic decomposition Γj =

(
2−jk

)
k∈Z. Then define a discretization operator, which

evaluates the function on the gridpoints and produces a sequence vj
k ∈ l∞ (Z). Formally write this operator as

Dj : C (R) → l∞ (Z). Now a reconstruction operator Rj is any map, which is a right inverse to Dj , i.e.
Dj ◦ Rj = Id.

If one chooses a reconstruction operator Rj then the composition Dj+1 ◦ Rj = S is a subdivision scheme,
which computes data at the scale j + 1. In the setting of multiresolution algorithms this subdivision method
is also called a prediction operator. The idea of a multiresolution algorithm is to reconstruct the function v
from the coarsest data set v0 and so-called details

{
d0, d1, d2, ..., dj

}
.

First decompose f using the discretization operator by the procedure of applying Dj to get vj . Note that
the discretization operator and the grid Γj cannot be chosen arbitrarily in this case as the subdivision scheme
S, which one uses in the following might be defined only a regular grid, e.g. on a dyadic grid. Having obtained
vj the process proceeds iteratively:

1. Define the details at step j as dj = Svj − v
(
Γj
)
. If j = 0, stop the decomposition.

2. Consider a coarser grid Γj−1 thereby obtaining a coarser sequence vj−1. Go to 1.

So the result is a set
{
v0, d0, d1, d2, ..., dj

}
, which is sufficient to reconstruct the initial sequence vj . Note

that the subdivision algorithm is crucial for the reconstruction process and one can ask the question, how the
stability of the subdivision scheme is related to the stability of the multiresolution algorithm or even more
generally if the multiresolution transform is stable. This means whether the following property holds for two
different given decompositions

{
v0, d0, ..., dj

}
and

{
ṽ0, d̃0, ..., d̃j

}
:

‖vL − ṽL‖ ≤ C1‖v0 − ṽ0‖+ C2

L−1∑
j=0

‖dj − d̃j‖ (22)

where C1 and C2 are constants. If this property holds we will call the multiresolution transform stable.
Note that this property is essential to use the algorithm for pratical applications like compression since in-
stead of the exact decomposition

{
v0, d0, d1, d2, ..., dj

}
one must work with a slightly perturbed decomposition{

ṽ0, d̃0, ..., d̃j
}

anyway due to numerical error and to achieve good compression rates, one also wants to set

details dj
k = 0 for all those k, which ”don’t contribute much”. So one needs to be assured that the result of the

reconstruction closely resembles the intial function/data.

The question remains, why one should actually bother about the stability of the subdivision algorithm since
it is easy to show that for the linear schemes the multiresolution transform is stable. Unfortunately linear
multiresolution techniques do not work for all applications like e.g. the removal of non-Gaussian noise, which
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motivated the development of a nonlinear multiresolution transform in [4]. Therefore we will give in the following
section an overview, which nonlinear schemes are available.

5 Nonlinear subdivision

5.1 Median Interpolation

This subdivision scheme, using the median of a function, was introduced in [4]. Currently the scheme is used
for the subdivision of sequences on regular grids. Let f be a real-valued function defined on an interval I. Then
the median of f on I is denoted med (f |I) and defined as

med (f |I) = arg min
m∈R

∫
I

|f (t)−m|dt (23)

Given initial data vj , one assumes that the data set consists of median values of a function v on triadic
intervals Ij,k

med (v|Ij,k) = vj
k (24)

We fix an even non-negative natural number D = 2A. Then for each interval Ij,k find a polynomial pj,k of
degree D, which ’interpolates the medians’; this means it satisfies

med (pj,k|Ij,k+l) = vj
k+l for −A ≤ l ≤ A (25)

It has been shown in [6] that such a polynomial pj,k exists and is unique. Unfortunately the proof is non-
constructive. Despite this fact one has obtained an explicit formula for the case D = 2; for the details and the
proof of this formula see [4]. Just suppose from now on that one has found the polynomial pj,k. Then one can
proceed to the imputation, which gets medians at the finer scale by

vj+1
3k+l = med (pj,k|Ij,3k+l) l = 0, 1, 2 (26)

This two-step process defines a nonlinear subdivision scheme S, which is also sometimes denoted as Smed in
this case. The lower bound for the Hölder exponent s for the limit curve has been the topic of several recent
papers ([10],[15]) and it has been shown that the critical Hölder exponent is s = 1. All proofs take advantage
of the fact that there exist closed form expressions for triadic median subdivision with quadratic polynomials.

We give the details of Smed : l∞(Z) → l∞(Z) in this special case by its action on triples of points (m1,m2,m3),
which represent medians on the intervals [0, 1], [1, 2] and [2, 3]. Let Q : R3 → R3 denote the map which maps
(m1,m2,m3) to three new medians (m(1)

1 ,m
(1)
2 ,m

(1)
3 ), which are defined on the intervals [1, 4/3], [4/3, 5/3] and

[5/3, 2] respectively. To see that this map Q covers all cases we need two properties of median subdivision.
First, triadic median interpolation with quadratic polynomilas is reversal equivariant, which means that
Q(m1,m2,m3) = −rev(Q(−m1,−m2,−m3)) where we define rev(a, b, c) := (c, b, a). Second, it also is affine
invariant, which means that for all a, b ∈ R we have Q(a + bm1, a + bm2, a + bm3) = a + bQ(m1,m2,m3). So
by translation and scaling invariance Q defines all cases. To see that those two properties hold obeserve that
median interpolation by a quadratic polynomial is a symmetric operation around the middle interval and for
affine invariance note that scaling all medians by b will scale all coefficients of the polynomial interpolating the
medians by the same factor. Translation invariance is obivous from the definition of median subdivision.

The explicit formulas for Q can be given as follows: Set d = m3−m2
m2−m1

then by using reversal equivariance we
can assume m2−m1 6= 0 since if m2−m1 = 0 we can exchange m1 and m3. If m3−m2 = 0 as well then clearly
Q(m1,m2,m3) = (m1,m1,m1). Hence we obtain the main representation formula:

Q(m1,m2,m3) = (m1,m1,m1) + (m2 −m1)Q(0, 1, 1 +
m3 −m2

m2 −m1
) (27)

:= (m1,m1,m1) + (m2 −m1)(q1(d), q2(d), q3(d))
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where the relevent coordinate functions qi(d) turn out to be (see [4]):

q1(d) =



59
27 + 7

27d− 8
27

√
16 + 16d + d2 if d ∈ [ 73 , 5]

26
27 + 16

27d− 4
27

√
1 + 16d + 16d2 if d ∈ [ 15 , 3

7 ]
77
135 + 13

135d + 8
135

√
1− 62d + d2 if d ∈ [−3,− 1

3 ]
1

288
323−214d+35d2

1−d if d ∈ [−11,−3]
7
9 −

d
9 otherwise

q2(d) =


− 1

270
1097−1174d+17d2+(278−8d)

√
1−62d+d2

−4+4d−
√

1−62d+d2 if d ∈ [− 10
7 ,− 7

10 ]
23
30 + 7

30d + 1
15

√
1− 62d + d2 if d ∈ [−3,− 1

3 ] \ [− 10
7 ,− 7

10 ]
1 otherwise

(28)

q3(d) =

{
1 + d− dq1( 1

d ) if d 6= 0
10
9 if d = 0

Although convergence properties have been extensively investigated in this case and also an explicit formula is
available, it is not known if the scheme is stable. It has been conjectured by several researchers in the field that
it is stable (e.g. [4]). It is excepted that for many other nonlinear subdivision algorithms similar problems with
respect to proving stability arise.

5.2 Continuous M-Estimators

We now generalize the concept of median subdivision by using M-estimators. Let f be a real-valued function
defined on the interval I, then the general M-estimator is defined as

m (f ; I, ϕ) = arg min
m∈R

∫
I

ϕ (f (t)−m) dt (29)

where ϕ can be chosen as any univariate convex function with a unique minimum. Recall that a real-valued
function ϕ is called convex on I if f (λx + (1− λ) y) ≤ λf (x) + (1− λ) f (y) whenever x, y ∈ I and 0 < λ < 1.
The other parts of the subdivision with medians carry over directly. It is instructive to list a few special cases
of M-estimators, i.e. of the function ϕ.

• ϕ (t) = |t|. This leads again to the median, namely med (f ; I) = arg minm∈R
∫

I
|f (t)−m|dt

• ϕ (t) =
√

t2 + ε2 − ε, for some ε > 0. So one uses a C∞ approximation to the absolute value function.
Also one notes that ϕ has positive second derivative.

• ϕ (t) = t2. This simply gives the average value ave (f ; I) = 1
meas(I)

∫
I
f (t) dt. The average value is known

to yield a linear subdivision scheme.

• ϕ (t) = |t|p for some p ∈ (1,∞). This estimator is also sometimes called the p-mean of f on I.

The generalization to M-Estimators has been grown out of the general problem for median interpolation,
i.e. to find a polynomial, which ”interpolates the medians”. This can be formalized as trying to find the inverse
map M−1 to:

M : Πn → Rn+1

p ∈ Πn M (p) = (med (p, Ii))
n
i=0 (30)

where Πn denotes the space of polynomials of degree less or equal to n. In general the inversion map M−1 is
known to be a homeomorphism (see [2]). To find the inverse numerically the second example for an M-estimator
introduced above is especially interesting since the smoothness of ϕ (t) =

√
t2 + ε2 − ε guarantees that M is

actually a diffeomorphism and one can use e.g. a Newton’s method to solve equations of the type (25). For
more details on results of this analysis see [11]. Nevertheless there are still many open problems related to
the theoretical properties and implementation issues for M-estimator based subdivision including the stability
analysis for all cases.

10



5.3 PPH

The PPH subdivision algorithm is based on a refinement of data on a dyadic grid Γj =
(
2−jk

)
k∈Z. It is based

on piecewise polynomial interpolation of degree 3, where instead of an arithmetic mean a harmonic mean is
used. The scheme is interpolatory and one tries to find at each level j for two neighboring points in the grid
xk and xk+1 the value at the midpoint xk+1/2 = (xk + xk+1) /2, which we will call vj

2k+1. As usual for schemes
based on polynomial interpolation one defines vj

2k+1 as the value of a polynomial P j
k at xk+1/2. In this case P j

k

is given as the unique polynomial of degree 3 satisfying:

P j
k (xt) =

{
vj

t if t = k − 1, k, k + 1
ṽj

t if t = k + 2
(31)

where ṽj
k+2 is defined as

ṽj
k+2 := vj

k+1 + vj
k − vj

k−1 + 2H
((

∆2vj
)
k
,
(
∆2vj

)
k+1

)
(32)

H (x, y) =
xy

x + y
(sgn (xy) + 1) (33)

In this case the sgn function is defined as sgn (x) = 1 if x ≥ 0 and sgn (x) = −1 for x < 0. This means the
function H is well defined and continuous on R2\ {(0, 0)}. But by noting that for the limit as (x, y) → (0, 0)
one has H (x, y) → 0 the function H can be extended to a continuous function on R2 by setting H(0, 0) = 0.

Also note that we can view the PPH subdivision as a perturbation of the linear subdivision process originating
from Lagrange interpolation of order 3. In particular the following explicit formula holds:

vj+1
2k+1 =

vj
k + vj

k+1

2
+

1
8
H
(
∆2vj

k+1,∆
2vj

k

)
(34)

This shows again the general pattern that many (though not all) nonlinear schemes can be viewed as a per-
turbation of linear schemes with a nonlinear term, which in this specific case is given by H

(
∆2vj

k+1,∆
2vj

k

)
.

Stability for the associated multiresolution algorithm for PPH subdivision, which is constructed as given in
previous section on multiresolution, has recently been proved in [2]. An implementation of PPH in MatLab can
be found in the Appendix A.1.

5.4 Normal subdivision

In general normal subdivision applies to curves. In addition to the initial data v0 (or in general vj for some j)
one needs to know the curve Γ, which one wants to approximate in advance since the normal subdivision scheme
is only part of a multiresolution algorithm. This separates normal subdivision from many other subdivision
schemes. For more details on the multiresolution analysis one might consider [8], where normal subdivision is
developed in detail.

The scheme is interpolating and one has vj+1
2k = vj

k. First use a subdivision scheme S, e.g. midpoint

subdivision ṽj+1
2k+1 =

(
vj

k + vj
k+1

)
/2, to construct a so-called base point ṽj+1

2k+1. Then join the two points vj
k

and vj
k+1 by a line. Construct the line l normal/orthogonal to the line just constructed so that l contains the

basepoint ṽj+1
2k+1. Then for many initial choices of subdivision algorithms S it is guaranteed that l intersects

Γ in at least one point. Choosing any one of these intersection points, we declare it as the new value vj+1
2k+1.

Figure 2 illustrates the process of normal subdivision graphically.

Many basic properties of this scheme are proved in [8], where the authors study the multiresolution algorithm
associated to the normal subdivision scheme.

5.5 Manifold-valued subdivision

Instead of trying to find a multiresolution transform for a function f : R → R, one is interested in the gener-
alization to a function p : R → M , where M is a manifold. For the following construction, one assumes that

11



Figure 2: Notation and construction for normal subdivision for curves

M is a Riemannian manifold of dimension d. At each p0 ∈ M one can define the corresponding tangent space
Tp0 (M). Elements in the tangent space will be denoted by θ. Again we work for the refinement process on a
dyadic grid. The following description is based on the scheme proposed in [7].

Assume that the function p is given on a coarse grid at level j, i.e. p is known at points pj
k = p

(
k/2j

)
for

k ∈ Z. Now fix an odd natural number D. Consider the D + 1 nearest grid points to pj
k. Then use the map

Logpj
k

: M → Tpj
k
(M) to map these points into the tangent space at pj

k; here the ’Log’ is the usual inverse to
the canonically defined expontential map ’Exp’, which is a map from M to Tpj

k
(M) and maps lines through

the origin of the tangent space to geodesics on the manifold. In particular this yields:

θ (l) = Logpj
k
(p (l)) l = −D − 1

2j
, . . . ,

D + 1
2j

(35)

Since the results θ (l) are elements of the tangent space one can simply treat them as vectors as the tangent
space is a vector space of dimension d. So chose a basis for Tpj

k
(M), say {ei}d

i=1. Then one obtains coordi-
nates/coordinate maps (τ1, . . . , τd) such that:

θ (l) =
d∑

i=1

τi (l) ei (36)

Since there is no way to directly refine the data on the manifold, we construct a special presentation of data
in the tangent space, which is defined by coordinate maps τi : Tpj

k
→ R. By noting that the family of maps

consisting of the compositions τi◦p are maps from R to R we use a refinement scheme on the following real-valued
sequence of data on a dyadic grid:

(τi (l))(D+1)/2j

l=−(D−1)/2j (37)

The authors of [7] propose to use a scheme of Deslauries-Dubuc. The Deslauries-Dubuc scheme is a linear
interpolation scheme, which uses the given data points on the dyadic grid to fit a polynomial π to the points
by Lagrange interpolation. Then one simply evaluates this polynomial π on the finer grid at scale 1/2j+1 to
get the refined values. Both schemes proposed in [7] for manifold data are interpolatory in the usual sense for
dyadic grids (here: pj+1

2k = pj
k).

The values for each coordinate τ̃i

(
k
2j + 1

2j+1

)
obtained by subdivision of the sequence in (37) now give an

imputed vector:

θ̃

(
k

2j
+

1
2j+1

)
=

d∑
i=1

τ̃i

(
k

2j
+

1
2j+1

)
ei (38)
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Using the exponential map to transfer the points back from the tangent space to the manifold, the refined data
is as follows:

pj+1
2k+1 = p

(
k

2j
+

1
2j+1

)
= Exppj

k

(
θ̃

(
k

2j
+

1
2j+1

))
(39)

The subdivision scheme is in general non-linear for many manifolds as the exponential and logarithm maps are
nonlinear. Note that there are several aspects, which make the subdivision scheme probably not well-defined
for all Riemannian manifolds and any initial data set. First of all the exponential and logarithm maps are only
defined locally at each point and the domain, on which they are injective, might simply not be big enough to
map all chosen points in the neighborhood of pj

k to the tangent plane in an injective way. Also the choice of
coordinates in the tangent space might influence the behaviour of the subdivision algorithm. Basically almost all
theoretical questions about manifold-valued subdivision proposed here are currently open including the possible
problems mentioned.

Another approach proposed in [7] for the subdivision scheme is an analog to average interpolation (discussed
as a special case of continuous M-estimators above). This approach basically replaces the Deslauries-Dubuc
scheme with average interpolation for the coordinates in equation (37).

6 An Example for Non-Linearizability

It might be appealing to try to fit the nonlinear schemes presented in the previous section into the framework
of quasilinear schemes and then just benefit from the results about Hölder continuity and stability, which have
been shown in [1]. In following we will show that this is not always directly possible without losing hypotheses
needed for the convergence and stability results to hold. In particular we focus on the stability properties of a
possible linearization.

As an example consider the interpolatory PPH subdivision SPPH as given in the previous section with the
explicit formula for the refined data vj+1 at step j + 1:

vj+1
2k+1 =

vj
k + vj

k+1

2
+

1
8
H
((

∆2vj
)
k+1

,
(
∆2vj

)
k

)
(40)

H (x, y) =
xy

x + y
(sgn (xy) + 1) (41)

Then suppose there exists a matrix S s.t. Svj = vj+1 as well. First observe that it is reasonable to assume that
S should obey the same locality property as SPPH , namely since vj

2k+1 only depends on the four neighboring
values vj

k+2, v
j
k+1, v

j
k and vj

k−1 the same locality should hold for S as well. Since the scheme is interpolatory
and vj+1

2k = vj
k the first requirement on S is:

s2l,k = 1 ∀l ∈ Z (42)

The second requirement, arising from equation (40), concerns the odd-indexed rows 2l + 1. To simplify the
notation we only consider the case for vj+1

1 here, which depends on the neighboring points vj
−1, v

j
0, v

j
1 and vj

2

and we will also drop the superscript j, then one requires:
2∑

k=−1

s1,kvk =
v0 + v1

2
+

1
8
H
((

∆2v
)
1
,
(
∆2v

)
0

)
(43)

=
v0 + v1

2
+

1
8

(v2 − 2v1 + v0) (v1 − 2v0 + v−1)
v2 − v1 − v0 + v−1

(sgn ((v2 − 2v1 + v0) (v1 − 2v0 + v−1)) + 1) (44)

If sgn ((v2 − 2v1 + v0) (v1 − 2v0 + v−1)) = −1, the equation is easily solved to yield s1 = s0 = 1/2 and s−1 =
s2 = 0 and the resulting matrix S would be just the matrix of a linear scheme originating from taking averages
of two neighboring points, so the interesting case occurs when sgn ((v2 − 2v1 + v0) (v1 − 2v0 + v−1)) = 1, this
yields:

2∑
k=−1

s1,kvk =
v0 + v1

2
+

1
4

(v2 − 2v1 + v0) (v1 − 2v0 + v−1)
v2 − v1 − v0 + v−1

(45)
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One can now simply attempt to solve this equation algebraically for one of the unknown elements of the matrix
s1,k, this gives the following result for s−1:

s−1 =
−1

4v−1 (v−1 − v0 − v1 + v2)
(−3v−1v0 + 4s0v−1v0 + 4v2

0 − 4s0v
2
0 + 4s1v−1v1 − v0v1

−4s0v0v1 − 4s1v0v1 + 4v2
1 − 4s1v

2
1 − v−1v2 + 4s2v−1v2

+4s0v0v2 − 4s2v0v2 − 3v1v2 + 4s1v1v2 − 4s2v1v2 + 4s2v
2
2) (46)

Similar expressions are obtained for s0, s1 and s2. Suppose that all si are continuous functions of the unknowns
v−1, v0, v1 and v2. Then set

v−1 = 1 v0 = 0 v1 = 1 (47)

⇒ s−1 (1, 0, 1, v2) =
−1 + v2 − s1v2 − s2v

2
2

v2
(48)

= − 1
v2

+ 1− s1 − s2v2 (49)

Since s1 and s2 are continuous they have (bounded) limits for v2 → 0. Hence one has for the limit of s−1:

lim
v2→0

s2 (1, 0, 1, v2) = lim
v2→0

(
− 1

v2
+ 1− s1 − s2v2

)
(50)

lim
v2→0

− 1
v2

+ C (51)

where C is some constant. This contradicts the assumption that s−1 is continuous. In particular it can obviously
be not Lipschitz continuous either. Hence one cannot say anything about the stability properties for the PPH
scheme just using the quasilinear theory as one needs Lipschitz dependence on data, i.e. ∀v, w ∈ l∞ (Z) the
subdivision operators S (v) and S (w) should satisfy

‖S (v)− S (w) ‖ ≤ C‖v − w‖ (52)

where C > 0 depends in a non-increasing way on max {‖v‖, ‖w‖}. This is impossible for the function given in
(46) as it is not Lipschitz for all v. This shows the need to find different ways to check for the stability of a
nonlinear subdivision scheme and in the next section we prove a result, which can be used to check whether a
nonlinear scheme is stable.

7 A Sufficient Condition for Stability

The following result is a generalization of a technique used by Amat and Liandrat in [2] to prove that PPH
subdivision is stable. Let S be a (nonlinear) subdivision scheme, which acts on the space l∞. Let vj ∈ l∞ (Z),
then vj+1 := Svj . Decompose S into the ’sum’ of a linear subdivision scheme Sl and a nonlinear subdivision
scheme Snl, in particular vj+1 = Svj = Slv

j + Snlv
j . Note that this is always possible as we can take Sl = 0,

but it is desirable to treat the ’easy’ linear part seperately if possible. We remind the reader that all norms,
which are used in the following are norms in l∞ (Z), i.e. ‖.‖ = ‖.‖l∞ . Let d

(
vj
)

= dj denote the details at level
j obtained from the multiresolution transform.

Theorem 7.1. Let
{
v0, d1, . . . , dL−1

}
and

{
ṽ0, d̃1, . . . , d̃L−1

}
be two multiresolution decompositions for vL, ṽL ∈

l∞ (Z). Let M denote the reconstruction operator for the multiresolution defined by vj+1 = Mvj = Svj + dj.
Assume further that ‖Sl‖ ≤ 1. Also for some constant C0 and a finite k and all j:

‖Snlv
j − Snlṽ

j‖ ≤ C0‖∆k
(
vj − ṽj

)
‖ (53)

In addition, suppose there exists an n-step contraction property for the k-th differences of the subdivision scheme

‖∆k
(
vj+n − ṽj+n

)
‖ ≤ p‖∆k

(
vj − ṽj

)
‖+ C1

n−1∑
i=1

‖∆k
(
dj+i − d̃j+i

)
‖ (54)
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where p < 1 and C1 is a fixed constant. Suppose furthermore there exists also a 1-step bound on the k-th
differences:

‖∆k
(
vj+1 − ṽj+1

)
‖ ≤ K

(
‖∆k

(
vj − ṽj

)
‖+ ‖∆k

(
dj − d̃j

))
‖ (55)

where K is a constant. Then one has the following inequality

‖vL − ṽL‖ ≤ C2‖v0 − ṽ0‖+ C3

L−1∑
j=0

‖dj − d̃j‖ (56)

with constants C2, C3. In particular the multiresolution M associated to the subdivision scheme S is stable.

Proof. By splitting S into a linear and nonlinear part and using the assumptions that the operator norm of the
linear part is bounded by 1 and that equation (53) holds, it follows that:

‖vj+1 − ṽj+1‖ = ‖Mvj −Mṽj‖
≤ ‖Slv

j − Slṽ
j‖+ ‖Snlv

j − Snlṽ
j‖+ ‖dj − d̃j‖

≤ ‖Sl‖‖vj − ṽj‖+ C0‖∆k
(
vj − ṽj

)
‖+ ‖dj − d̃j‖

≤ ‖vj − ṽj‖+ C0‖∆k
(
vj − ṽj

)
‖+ ‖dj − d̃j‖ (57)

Now one simply recurses the procedure given above for ‖vL − ṽL‖ to obtain:

‖vL − ṽL‖ ≤ ‖vL−1 − ṽL−1‖+ C0‖∆k
(
vL−1 − ṽL−1

)
‖+ ‖dL−1 − d̃L−1‖

≤ ‖v0 − ṽ0‖+ C0

L−1∑
i=1

‖∆k
(
vi − ṽi

)
‖︸ ︷︷ ︸

:=A

+
L−1∑
i=1

‖di − d̃i‖ (58)

Note that this estimate is already in the right form, except that the terms denoted by A have to be estimated.
They originate from the nonlinear part of the subdivision scheme. Hence one has to consider the expression A
for each value i, in particular:

‖∆k
(
vi − ṽi

)
‖ ≤ p‖∆k

(
vi−n − ṽi−n

)
‖+ C1

n∑
t=1

‖∆k
(
d
(
vi−t

)
− d

(
ṽi−t

))
‖ (59)

Now we can use the inequality above recursively bi/nc := s times.

‖∆k
(
vi − ṽi

)
‖ ≤ ps‖∆k

(
vi−sn − ṽi−sn

)
‖+ C1

s∑
r=1

pr−1
rn∑

t=(r−1)n

‖∆k
(
di−t − d̃i−t

)
‖ (60)

The remaining steps to reach ‖d0 − d̃0‖ will then be performed by a one-step estimate on the k-th differences
as given in equation (55). Assume without loss of generality that K = 1; otherwise one just has to keep track
of another fixed constant, which can be absorbed into C3 anyway. In particular this means

‖∆k
(
vi−sn − ṽi−sn

)
‖ ≤ ‖∆k

(
v0 − ṽ0

)
‖+

i−sn−1∑
t=0

‖∆k
(
dt − d̃t

)
‖︸ ︷︷ ︸

Ri

(61)

where Ri simply denotes the ’remainder’ with respect to the index i. Thus we have:

‖∆k
(
vi − ṽi

)
‖ ≤ ps‖∆k

(
v0 − ṽ0

)
‖+ C1

s∑
r=1

pr−1
rn∑

t=(r−1)n

‖∆k
(
di−t − d̃i−t

)
‖+ psRi (62)
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Hence we obtain an estimate for the sum A:

A ≤
L−1∑
i=1

ps‖∆k
(
v0 − ṽ0

)
‖+ C1

s∑
r=1

pr−1
rn∑

t=(r−1)n

‖∆k
(
di−t − d̃i−t

)
‖+ psRi


=

L−1∑
i=1

[
ps‖∆k

(
v0 − ṽ0

)
‖
]

︸ ︷︷ ︸
B1

+C1

L−1∑
i=1

s∑
r=1

pr−1
rn∑

t=(r−1)n

‖∆k
(
di−t − d̃i−t

)
‖

︸ ︷︷ ︸
B2

+
L−1∑
i=1

psRi︸ ︷︷ ︸
:=B3

(63)

The last term B3 is clear and just comes from the fact that the recursive use of an n-step property might not
terminate at 0, but somewhere between 1 and n− 1, but since it is a finite sum of details it can be incorporated
in the second term on the right hand side in equation (56) as claimed in the proposition. This leaves B1 and
B2; for B1 we have:

B1 ≤
∞∑

i=1

pi‖∆k
(
v0 − ṽ0

)
‖ = ‖∆k

(
v0 − ṽ0

)
‖ 1
1− p

≤ ‖
(
v0 − ṽ0

)
‖ 1
1− p

(
k∑

m=0

(
k

m

))
(64)

as p < 1 and one gets a convergent geometric series. The last multiplicative term in the result stems from a
crude estimate of the finite difference operator:

|∆k (. . .) | = |
k∑

m=0

(−1)m

(
k

m

)
(. . . ) | =≤

k∑
m=0

(
k

m

)
| (. . . ) | (65)

So the only remaining term is B2, which has a triple sum, but rearrangement of finite sums is always possible,
so after rearranging we again use the fact that one gets a geometric series and then use the estimate for the
finite difference operator. This concludes the proof.

8 Applications of the Theorem

The result proven in section 7 is a generalization of techniques, which have been used to show that PPH
subdivision is stable. Recall that there is an explicit formula for each subdivision step (see equation (40)):

vj+1
2k = vj

k (66)

vj+1
2k+1 =

vj
k + vj

k+1

2
+

1
8
H
((

∆2vj
)
k+1

,
(
∆2vj

)
k

)
(67)

H (x, y) =
xy

x + y
(sgn (xy) + 1)

To prove a property of the type as required by equation (54) one needs to investigate inequalities of the form
‖∆kvj+n −∆kṽj+n‖ ≤ p‖∆kvj −∆kṽj‖ with the obvious goal to show for some number of steps n and some
difference order k that p < 1. For the PPH scheme this can be accomplished for k = 2 and n = 2 as
demonstrated by Amat and Liandrat in [2]. We give all the main steps here for convenience. First define a
function Z(x, y, z) = x

2 + 1
8 (H(x, y) + H(x, z)), then we obtain:

Lemma 8.1. The following properties for the functions H and Z hold for all x, y, z, x′, y′, z′:

1. |H(x, y)| ≤ max{|x|, |y|}

2. |H(x, y)−H(x′, y′)| ≤ 2 ·max{|x− x′|, |y − y′|}

3. |Z(x, y, z)| ≤ |x|
2

4. |Z(x, y, z)− Z(x′, y′, z′)| ≤ 1
2 |x− x′|+ 1

2max{|y − y′|, |z − z′|}

The properties can be verified by direct calculation and it should be remarked that the proof uses explicit
formulas, so one cannot hope to obtain a generalized method for other subdivision schemes, but one indeed
obtains:
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Theorem 8.2 (2-step contraction property for PPH). Let v and w denote two elements of l∞(Z) then
the following holds (we set ‖.‖∞ = ‖.‖ for simplicity of notation):

1. ‖∆2(Sv)‖ ≤ 1
2‖∆

2v‖

2. |∆2((Sv)j − (Sw)j)| ≤ 1
2‖∆

2(v − w)‖ j odd

3. |∆2((Sv)j − (Sw)j)| ≤ 1
2‖∆

2(v − w)‖ j even

4. |∆2((S2v)j − (S2w)j)| ≤ 3
4‖∆

2(v − w)‖

Proof. For simplicity denote Sv = v(1) and S2v = v(2).

1. The goal is to show |(∆2v(1))j | ≤ 1
2‖∆

2v‖ for all j. So assume j is odd, say j = 2n + 1. Then
since PPH is interpolatory ∆2v

(1)
j = v

(1)
j+1 − 2v

(1)
j + v

(1)
j−1 = vn+1 − 2v

(1)
j + vn. And property 1 of the

previous Lemma 8.1 implies |vn+1 − 2v
(1)
j + vn| ≤ 1

4max{|∆2vn+1|, |∆2vn|} ≤ 1
4‖∆

2v‖. For j = 2n we

obtain instead v
(1)
j+1 − 2v

(1)
j + v

(1)
j−1 = v

(1)
j+1 − 2vn + v

(1)
j−1 and from the definitions of H and Z it follows

v
(1)
j+1 − 2vn + v

(1)
j−1 = Z(∆2vn,∆2vn+1,∆2vn−1). Now apply property 3 of Lemma 8.1.

2. Set j = 2n+1. Then |vn+1−2v
(1)
j +vn−wn+1 +2w

(1)
j −wn| = 1

4 |H(∆2vn+1,∆2vn)−H(∆2wn+1,∆2wn)|
and property 2 of Lemma 8.1 gives the result.

3. Set j = 2n. Perform calculation as for the even case in 1. and apply property 4 of Lemma 8.1.

4. The odd case j = 2n + 1 is done already due to part 2. of this theorem so set j = 2n. This gives the
equation:

|∆2(v(2)
j − w

(2)
j )| = |v(2)

j+1 − 2v
(2)
2n + v

(2)
j−1 − (w(2)

j+1 − 2w
(2)
2n + w

(2)
j−1)| (68)

= |Z(∆2v(1)
n ,∆2v

(1)
n+1,∆

2v
(1)
n−1)− Z(∆2w(1)

n ,∆2w
(1)
n+1,∆

2w
(1)
n−1)| (69)

Obviously either n, n − 1 or n + 1 must be odd and hence 2. of this theorem and property 4 of Lemma 8.1
imply the result.

Although this proof by Amat and Liandrat (see [2]) is quite short it needs as an essential requirement the
special properties of the nonlinear perturbation of the PPH scheme and there is no hope of generalizing this
technique to other subdivision algorithms. Since Median-Subdivision is one of the main cases where no stability
analysis is known the idea is to check whether there is a possibility to apply Theorem 7.1 to this case as well.

9 Numerical Simulation

The goal is to verify a property of the type given in equation (54) for triadic median subdivision in the easiest
with D = 2. In particular an inequality of the form:

‖∆kvj+n −∆kwj+n‖ ≤ p‖∆kvj −∆kwj‖ (70)

for p < 1 is needed. The first question is obviously, which order of differences k and how many subdivision
steps n will suffice to achieve this inequality. Obviously the analytical checking gets quite complicated, which
is apparent by looking at equations (27) and (28). Hence we investigated the inequality (70) first numerically.
In particular the problem can be formalized as follows for the case:

• Find the smallest possible p such that (70) holds for all initial sequence v and w

Hence we obtain an optimization problem with the number of variables equal to at most twice the size of
the (k, n)-invariant neighborhood for differences of the subdivision operator, where by an (k, n)-invariant
neighborhood of differences we mean the number of elements in v and w, which are required to determine the
norm ‖∆kvj+n −∆k+nwj‖ uniquely. For k = 2 and n = 1 it is easy to verify that one indeed needs 5 medians
for v and w at most. Geometrically this can be related to the fact that 3 medians of v and 3 medians of w on
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the same initial intervals, e.g. [0, 1],[1, 2] and [2, 3] cover all differences after one step on [1, 2]. And 2 additional
medians of v and w each defined on [−1, 0] and [3, 4] respectively cover differences across the intervals [0, 1] to
[1, 2] and [1, 2] to [2, 3]. Note that this is not the minimum number of variables since we have affine invariance
(see section 5.1) we can set two values constantly to 0. This gives 8 variables and a well-defined optimization
problem, which has been investigated.

Several functions in MatLab have been developed to analyse the behaviour for particular values of k and n.
Those functions can be found in the Appendix A.1. First we have tracked the parameter p for random initial
sequences; the results for this computation for k = 1, 2 and n = 1, 2 with 200 random sequences are displayed
in figure 3.

Figure 3: Random Simulation for the ’stability’ parameter p

This simulation gives a good indication that it is not hopeless to attempt analyctical calculations. Fur-
thermore a function has been developed to calculate the parameter p based on two distinct input sequences.
Then this function has been converted into a suitable I/O format for the MatLab Optimization Toolbox. The
toolbox documentation can be found online or is alternatively available in the MatLab Help. We chose to use
a Nelder-Mead Simplex Algorithm (see [9]), which is very robust, but has the drawback that it does converge
to local minima. Therefore we started at different points/regions in the search space and we also re-started the
algorithm once a local minimum has been found several times. Although this method will not turn out a precise
answer for the minimum value required for p, it provides some clear indications.

Contrary to the initial guess based on random simulation we have identified with the optimization algorithm
two counter-examples, which show that only for one iteration step there is no chance to verify the required
property namely for 1 step and first order differences we have:

• v=[0 0 0.25 -0.46 1.39] and w=[0 0 0.23 -0.46 1.37] ⇒ p > 1.01

Note that for one step and first order differences the (1, 1)-invariant neighborhood for differences is indeed of
size 4. Also for 1 step and second order differences we obtain a counterexample:
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• v=[5.11 -1.14 -1.11 1.58 0.6] and w=[5 -1.87 -2.52 -0.44 -2.05] ⇒ p > 1.5

It is easy to obtain even more counterexamples with the programs provided in Appendix A.1. For k = 1 and
n = 2 no counterexample could be obtained via optimization. So the conjecture is that median interpolation
is indeed stable and one needs to take into account two iteration steps. For the smoothness analysis Xie and
Yu (see [15]) calculated the dynamics associated to one sequence for two iterations explicitly. This approach is
again very specialized and the numerical simulation together with the complicated formulas for two sequences
show that for stability analysis new tools and ideas might be needed. Nevertheless, based on the simulation the
goal must be to develop methods, which allow analysis of iterations of the subdivision process and yield explicit
estimates on differences.

10 Local Linearization

One idea to accomplish the analysis is to consider a ”linearized” median interpolation. Note that the direct
approach is not always possible as demonstrated for the PPH scheme. Therefore we choose to employ a local
linearization to the formulas presented in equations (27) and (28). Using linear interpolation for each of the
functions with interpolation points on the boundary of definition we obtain a linear scheme. To demonstrate
how this linearization process works recall the defintion of the subdivision operator for median interpolation
with quadratic polynomials (we assume m2 −m1 6= 0):

Q(m1,m2,m3) = (m1,m1,m1) + (m2 −m1)Q(0, 1, 1 +
m3 −m2

m2 −m1
) (71)

:= (m1,m1,m1) + (m2 −m1)(q1(d), q2(d), q3(d))

q1(d) =



59
27 + 7

27d− 8
27

√
16 + 16d + d2 if d ∈ [ 73 , 5]

26
27 + 16

27d− 4
27

√
1 + 16d + 16d2 if d ∈ [ 15 , 3

7 ]
77
135 + 13

135d + 8
135

√
1− 62d + d2 if d ∈ [−3,− 1

3 ]
1

288
323−214d+35d2

1−d if d ∈ [−11,−3]
7
9 −

d
9 otherwise

q2(d) =


− 1

270
1097−1174d+17d2+(278−8d)

√
1−62d+d2

−4+4d−
√

1−62d+d2 if d ∈ [− 10
7 ,− 7

10 ]
23
30 + 7

30d + 1
15

√
1− 62d + d2 if d ∈ [−3,− 1

3 ] \ [− 10
7 ,− 7

10 ]
1 otherwise

(72)

q3(d) =

{
1 + d− dq1( 1

d ) if d 6= 0
10
9 if d = 0

As an example suppose d ∈ [− 10
7 ,− 7

10 ]. Then evaluating at the endpoints of the interval for the functions
qi gives:

q1(−3) =
10
9

q1(−
1
3
) =

22
27

(73)

q2(−
10
7

) =
15
14

q2(−
7
10

) =
21
20

(74)

Now using Lagrange interpolation for the two endpoints of the interval for d this gives two new functions r1(d)
and r2(d) defined on [−3,− 1

3 ] and [− 10
7 ,− 7

10 ] namely:

r1(d) =
7
9
− d

9
(75)

r2(d) =
35
34

− d

34
(76)

Using the usual formula to express q3 in terms of q1 we immedeately get for r3(d):

r3(d) =
10
9

+
2
9
d (77)
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Proceeding the same way for all the other cases and applying linear interpolation on the intervals [−3,− 10
7 ]

and [− 7
10 ,− 1

3 ] seperately we obtain a locally linearized version R of the median interpolation given by:

R(m1,m2,m3) = (m1,m1,m1) + (m2 −m1)R(0, 1, 1 +
m3 −m2

m2 −m1
) (78)

:= (m1,m1,m1) + (m2 −m1)(r1(d), r2(d), r3(d))

r1(d) =
7
9
− d

9
(79)

r2(d) =


25+d
22 if d ∈ [−3,− 10

7 ]
35−d
34 if d ∈ [− 10

7 ,− 7
10 ]

3
22 (7− d) if d ∈ [− 7

10 ,− 1
3 ]

1 otherwise

(80)

r3(d) =
10
9

+
2
9
d (81)

Note that we now have indeed a linear scheme since the last term for each choice of function ri is of the form:

(m2 −m1) · (ad + b) = a(m2 −m1) ·
m3 −m2

m2 −m1
+ b(m2 −m1) = a(m3 −m2) + b(m2 −m1) (82)

The most interesting observation of this calculation is that all the cases for the two functions q1 and q3 collapse
into one linear scheme. Hence one expects the most complicated nonlinear behaviour of the subdivision algorithm
in the middle interval of the evaluation of the quadratic function, which has the prescribed medians on 3 intervals.
Note that we include in the Appendix A.2 a code in Mathematica 5 format, which makes all the algebraic
calculations necessary for the local linearization reproducible. Furthermore this code contains a calculation for
the maximum error, which occurs at each step for each interval of the parameter d if one replaces the functions
qi by ri. This can be done as follows:

1. Choose an interval I for d on which a local linearzation has been applied

2. Calculate maxd∈I |ri(d)− qi(d)| := Ei(d)

Note that this is the error comitted in the calculation for ri instead of qi and note that it gets multiplied by a
factor m2−m1 according to the definition of the operator R. The following table summarizes the results of the
calculations of Ei(d); for readability only the approximate values of the errors are given:

d
[
7
3 , 5
] [

1
5 , 3

7

] [
−3,− 10

7

] [
− 10

7 ,− 7
10

] [
− 7

10 ,− 1
3

]
[−11,−3]

E1(d) 0.016 0.002 0.064 0.064 0.064 0.022
E2(d) 0 0 0.012 0.001 0.006 0

where E3(d) follows immediately from E1. Having linearized the median subdivision the hope is that it is much
easier to verify by a careful error analysis that the contraction property for differences and two subdivision
steps holds. The main reason for this is that one has basically obtained a quasilinear subdivision scheme, which
means that an analysis of the joint spectral radius of the scheme and possibly its associated difference schemes
can be attempted. The calculations have not been carried out yet.

Other options to verify the necessary contraction property for the differences for the median scheme are
obviously direct estimates for the formulas or calculations involving dynamical systems theory as demonstrated
by Xie and Yu in the convergence analysis in [15]. Note that both ways are not generic approaches, i.e. they take
advantage of the special structure of a subdivision algorithm, whereas the way proposed here is an approach,
which might possible turn out to be a more general analysis tool:

1. Linearize the scheme, i.e. replace the nonlinear operator by an appropiate number of linear operators

2. Use techniques from the analysis of quasilinear subdivision methods

3. Use an error analysis to conclude the properties also for the nonlinear scheme
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11 Results and Conclusions

The overview of nonlinear subdivision schemes shows that convergence properties have been investigated, but
stability analysis turns out to be a problem in many cases. Nevertheless, many ideas have been developed
during the last ten years of research. In addition to several concrete examples for nonlinear schemes, especially
the analysis of quasilinear schemes, methods for convergence analysis of nonlinear schemes and generalizations
of subdivison to manifolds present interesting approaches.

Despite the fact that in many cases generalized versions of tools from linear subdivision can be used, it has
been shown that not every scheme has a direct linearization by the example of PPH subdivision (see section 6).
A special result for the stability analysis of PPH subdivision has been generalized to apply to any subdivision
scheme once an inequality for the k-th order differences after n subdivision steps holds with a sufficiently small
constant. In the special case of triadic median subdivision with quadratic polynomials, it has been demonstrated
that 1 subdivision step is insufficient and it has been conjectured that two steps are sufficient to prove the desired
inequality. To simplify the analysis a local linearization of the median subdivision has been carried out. The
verification of properties for this local linearization still remains an open problem.
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A Appendix

A.1 MatLab Functions

The following MatLab functions have been developed to numerically investigate the properties of subdivision
schemes and their stability. Especially the median subdivision for the case of quadratic polynomials has been
investigated. Each function is documented by the comments to be found in the first few lines of the program-
ming code. The functions have been tested using MatLab Version R14. For an optimization problem we used
the MatLab Optimization Toolbox 3.

function P=poly_fit_median(intervals,medians,tol)

% Finds a polynomials of degree D for D given medians on given inervals
% Uses fixed-point iteration // adapted version of WaveLab Toolbox

% Input: intervals = the intervals where the medians are defined
% medians = prescribed median values on the intervals
% tol = tolerance for the fixed point iteration

% Output: Polynomial in MatLab format that fits medians
% e.g. intervals=[0:1:3] // medians = [0 1 0] // tol=10^(-8)

l=length(intervals);
m=length(medians);
if(m ~= l-1)

disp(’# of intervals and medians does not match!’)
end

%Determine midpoins of intervals
for k=1:l-1

mid(k)= (intervals(k)+intervals(k+1))/2;
end

residual = medians; %initial residual
P = zeros(1,m); %intial guess for polynomial
counter=1; %Counter for iteration limit

while ( norm(residual)/norm(medians) > tol & counter < 1000)
% Suppose medians are values of P at midpoints

predict_poly = polyfit(mid,residual,m-1);
P = P + predict_poly;
for i=1:m

predict_medians(i) = BlockMedian(P,[intervals(i) intervals(i+1)]);
end
residual = medians - predict_medians;
counter= counter+1;

end

if(counter>=1000)
disp(’Warning - limit of # iterations for poly_fit_median reached...’)

end
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function p=opt_prefactor(x)

%Suitable version for optimization toolbox of ’prefactor.m’

%Insert different data here:
v=x(1:5);
w=x(6:10);
k=2; % steps
l=1; % differences
method=’sub_median2’;

%Requires v,w to be big enough to compute the desired D^{l}

%Calculates the prefactor ’p’ in the estimate necessary for stability
% ||D^{l}v^{k}-D^{l}w^{k}|| <= p ||D^{l}v^{0}-D^{l}w^{0}||

%Iterate the given sequences for k steps
if(strcmp(method,’sub_pph’))

v_k=sub_pph(v,k);
w_k=sub_pph(w,k);

elseif(strcmp(method,’sub_median’))
v_k=sub_median(v,k);
w_k=sub_median(w,k);

elseif(strcmp(method,’sub_median1’))
v_k=sub_median1(v,k);
w_k=sub_median1(w,k);

elseif(strcmp(method,’sub_median2’))
v_k=sub_median2(v,k);
w_k=sub_median2(w,k);

else
disp(’Last input argument must be a valid string for a method’);

end

%Apply the l-th order difference operator
Dv_k=v_k;
Dw_k=w_k;
Dv=v;
Dw=w;
for i=1:l

Dv_k=diff(Dv_k);
Dw_k=diff(Dw_k);
Dv=diff(Dv);
Dw=diff(Dw);

end

RHS=max(abs(Dv-Dw));
LHS=max(abs(Dv_k-Dw_k));
p=LHS/RHS;

%for maximizing give the negative
p=-p;
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function p=prefactor(v,w,k,l,method)

%Calculates the prefactor ’p’ in the estimate necessary for stability
% ||D^{l}v^{k}-D^{l}w^{k}|| <= p ||D^{l}v^{0}-D^{l}w^{0}||

%Input: v = intital sequence
% w= other intital sequence
% k = number of steps for the subdivision
% l = order of the differences
% method = (string) giving the subdivision algorithm

%Requires v,w to be big enough to compute the desired D^{l}

%Iterate the given sequences for k steps
if(strcmp(method,’sub_pph’))

v_k=sub_pph(v,k);
w_k=sub_pph(w,k);

elseif(strcmp(method,’sub_median’))
v_k=sub_median(v,k);
w_k=sub_median(w,k);

elseif(strcmp(method,’sub_median1’))
v_k=sub_median1(v,k);
w_k=sub_median1(w,k);

elseif(strcmp(method,’sub_median2’))
v_k=sub_median2(v,k);
w_k=sub_median2(w,k);

else
disp(’Last input argument must be a valid string for a method’);

end

%Apply the l-th order difference operator
Dv_k=v_k;
Dw_k=w_k;
Dv=v;
Dw=w;
for i=1:l

Dv_k=diff(Dv_k);
Dw_k=diff(Dw_k);
Dv=diff(Dv);
Dw=diff(Dw);

end

RHS=max(abs(Dv-Dw))
LHS=max(abs(Dv_k-Dw_k))
p=LHS/RHS;

%bad sequences are output (for control purposes)
%if(p>1)
% v
% w
% p
%end
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function res=sub_median(v,steps)

%Subdivision scheme - Median/Tryadic/D=2
% Using direct formulas

%Input: v = intital starting vector
% steps = number of refinement steps
%Output: Longest sequence, which can be calculated from input

current_step=0; %Overall iteration steps
res=v;

while(current_step<steps) %Big outer loop
v=res;

for j=1:(length(v)-2)
m1=v(j);
m2=v(j+1);
m3=v(j+2);

%main decision process based on d
if( (m2-m1) ==0 & (m3-m2)==0)

new_med=[m1,m1,m1];
else

%distinguish reversal subcase
if( (m2-m1)==0 & (m3-m2)~=0)

%don’t forget to reverse in the end
temp=m1;
m1=m3;
m3=temp;

else
%just continue

end

d=(m3-m2)/(m2-m1);

%Calculate q1(d)
if(d>=7/3 & d<=5)

q1=59/27+7/27*d-8/27*sqrt(16+16*d+d^2);
elseif(d>=1/5 & d<3/7)

q1=26/27+16/27*d-4/27*sqrt(1+16*d+16*d^2);
elseif(d>=-3 & d<=-1/3)

q1=77/135+13/135*d+8/135*sqrt(1-62*d+d^2);
elseif(d>=-11 & d<-3)

q1=-1/288*(323-214*d+35*d^2)/(-1+d);
else

q1=7/9-d/9;
end

%Calculate q2(d)
if(d>=-10/7 & d<=-7/10)

q2=-1/270*(1097-1174*d+17*d^2+(278-8*d)*sqrt(1-62*d+d^2))
/ (-4+4*d-sqrt(1-62*d+d^2)) ;

elseif( (d>=-3 & d<-10/7) | (d>-7/10 & d<=-1/3) )
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q2=23/30+7/30*d+1/15*sqrt(1-62*d+d^2);
else

q2=1;
end

%Calculate q3(d)
if(d~=0)

d_inv=1/d;
if(d_inv>=7/3 & d_inv<=5)
q3_temp=59/27+7/27*d_inv-8/27*sqrt(16+16*d_inv+d_inv^2);

elseif(d_inv>=1/5 & d_inv<3/7)
q3_temp=26/27+16/27*d_inv-4/27*sqrt(1+16*d_inv+16*d_inv^2);

elseif(d_inv>=-3 & d_inv<=-1/3)
q3_temp=77/135+13/135*d_inv+8/135*sqrt(1-62*d_inv+d_inv^2);

elseif(d_inv>=-11 & d_inv<-3)
q3_temp=-1/288*(323-214*d_inv+35*d_inv^2)/(-1+d_inv);

else
q3_temp=7/9-d_inv/9;

end
q3=1+d-d*q3_temp;

else
q3=10/9;

end

%get the result vector new_med
new_med=[m1,m1,m1]+(m2-m1)*[q1,q2,q3];

%handle the reversal case
if( (m2-m1)~=0 & (m3-m2)==0)

new_med=[new_med(3),new_med(2),new_med(1)];
else

%just continue
end

end %ends the decision and calculation based on d
res(j*3-2:j*3)=new_med;

end %ends the current step

current_step=current_step+1;
end %ends the whole procedure

function res=my_sgn(x)

%Version of the ’sgn’ function for PPH-scheme

if(x>0)
res=1;

else
res=-1;

end
end
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function res=sub_median2(v,steps)

%Subdivision scheme - Median/Tryadic/D=2
% Linearized Version !!

%Input: v = intital starting vector
% steps = number of refinement steps
%Output: Longest sequence, which can be calculated from input

current_step=0; %Overall iteration steps
res=v;

while(current_step<steps) %Big outer loop
v=res;

for j=1:(length(v)-2)
m1=v(j);
m2=v(j+1);
m3=v(j+2);

%main decision process based on d
if( (m2-m1) ==0 & (m3-m2)==0)

new_med=[m1,m1,m1];
else

%distinguish reversal subcase
if( (m2-m1)==0 & (m3-m2)~=0)

%don’t forget to reverse in the end
temp=m1;
m1=m3;
m3=temp;

else
%just continue

end

d=(m3-m2)/(m2-m1);

%Calculate q1(d)
q1=7/9-d/9;

%Calculate q2(d)
if(d>=-10/7 & d<=-7/10)

q2=(35-d)/34 ;
elseif( d>=-3 & d<-10/7 )

q2=(25+d)/22;
elseif( d>-7/10 & d<=-1/3 )

q2=-3/22*(-7+d);
else

q2=1;
end

%Calculate q3(d)
q3=2/9*d+10/9;

%get the result vector new_med
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new_med=[m1,m1,m1]+(m2-m1)*[q1,q2,q3];

%handle the reversal case
if( (m2-m1)~=0 & (m3-m2)==0)

new_med=[new_med(3),new_med(2),new_med(1)];
else

%just continue
end

end %ends the decision and calculation based on d
res(j*3-2:j*3)=new_med;

end %ends the current step

current_step=current_step+1;
end %ends the whole procedure

function res=pph(v,steps)

%Subdivision scheme - PPH

%Input: v = intital starting vector
% steps = number of refinement steps
%Output: Longest sequence, which can be calculated from input

current_step=0; %Overall iteration steps
res=v;

while(current_step<steps) %Big outer loop
v=res;
%Calculate the maximum number of new elements (odd entries)
for k=1:(length(v)-3)

d1=v(k)-2*v(k+1)+v(k+2);
d2=v(k+1)-2*v(k+2)+v(k+3);
if(d1+d2==0)

v_new(k)= (v(k+1)+v(k+2))/2; %Prevent division by zero
else

v_new(k)=( v(k+1)+v(k+2) )/2-1/8*(d1*d2/(d1+d2)*(my_sgn(d1*d2)+1));
end

end

%Put old and new entries together in one vector
new_count=1;
old_count=2; %first entry must be deleted (see PPH scheme)

for j=0:2*length(v_new)
if(mod(j,2)==0)

res(j+1)=v(old_count);
old_count=old_count+1;

else
res(j+1)=v_new(new_count);
new_count=new_count+1;

end
end
current_step=current_step+1;

end
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function [res,bad,bad_fval]=optimize(runs)

%Finds optimal value ’p’ using MatLab optimization toolbox
%Input: runs = number of runs for optimization

counter=1;
%Note that stepsize, order of differences, etc. are directly coded in opt_prefactor

for i=1:runs
input=(-1)*ones(1,10)+2*rand(1,10);
options=optimset(’MaxFunEvals’,1500);
[x,fval,exitflag,output]=fminsearch(@opt_prefactor,input,options);
res(i)=fval;
if (fval < -1) %bad sequence

bad(counter,:)=x;
bad_fval(counter)=fval;
counter=counter+1;

end
end

plot([1:length(res)],-res,’x’)

function bad=simulate_rand(seq,seq_length,steps,diff_order,scheme)

%Random simulation for stability analysis ||...||<p||...||

%Checks ’p’ for random intitial sequences between -1 and 1

%Input: seq = number of sequences to try
% seq_length = length of those sequences
% steps = number of steps for the subdivision method
% diff_order = order of the differences to use
% scheme = (string) subdivision method to use
counter=1;

for i=1:seq
v=2*rand(1,seq_length)-ones(1,seq_length);
w=2*rand(1,seq_length)-ones(1,seq_length);
result(i)=prefactor(v,w,steps,diff_order,scheme);
if(result(i)>1)

bad(counter,:)=[v w];
counter=counter+1;

end
end
plot([1:seq],result,’x’,[1:seq],max(result)*ones(1,length(result)))
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function medians = sub_median1(v,steps)

%Subdivision scheme - Median/Tryadic/D=2
% Uses WaveLab functions to cross-check

%Input: v = intital starting vector
% steps = number of refinement steps
%Output: Longest sequence, which can be calculated from input

tol = 10^(-8); % tolerance for fixed point iteration
medians=v;

for k=1:steps %Big outer loop
counter=1;
for j=1:length(medians)-2

P=poly_fit_median([0:1:3],medians(j:j+2),tol);
%Find medians on new intervals
for i=0:2

medians_new(counter)=BlockMedian( P , [1+1/3*i 1+1/3*(i+1)] );
counter=counter+1;

end
end
medians=medians_new;

end
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A.2 Calculations for Local Linearization

The following code can be executed in Mathematica. It has been tested on version 5.0 and is used for the local
linearization of the quadratic median interpolation. It employs linear Lagrange interpolation; furthermore the
error for each interpolation polynomial is calculated.

f1[d ]:=59/27 + 7/27 ∗ d− 8/27 ∗ Sqrt[16 + 16 ∗ d + d∧2];
f2[d ]:=26/27 + 16/27 ∗ d− 4/27 ∗ Sqrt[1 + 16 ∗ d + 16 ∗ d∧2];
f3[d ]:=77/135 + 13/135 ∗ d + 8/135 ∗ Sqrt[1− 62 ∗ d + d∧2];
f4[d ]:=− 1/288 ∗ (323− 214 ∗ d + 35d∧2)/(−1 + d);
f5[d ]:=− 1/270 ∗ (1097− 1174 ∗ d + 17 ∗ d∧2 + (278− 8 ∗ d) ∗
Sqrt[1− 62 ∗ d + d∧2])/(−4 + 4 ∗ d− Sqrt[1− 62 ∗ d + d∧2]);
f6[d ]:=23/30 + 7/30 ∗ d + 1/15 ∗ Sqrt[1− 62 ∗ d + d∧2];
f7[d ]:=23/30 + 7/30 ∗ d + 1/15 ∗ Sqrt[1− 62 ∗ d + d∧2];

f1r = f1[7/3];
f1l = f1[5];
f2r = f2[1/5];
f2l = f2[3/7];
f3r = f3[−3];
f3l = f3[−1/3];
f4r = f4[−11];
f4l = f4[−3];
f5r = f5[−10/7];
f5l = f5[−7/10];
f6r = f6[−3];
f6l = f6[−10/7];
f7r = f7[−7/10];
f7l = f7[−1/3];

g1[d ]:=(d− 7/3)/(5− 7/3) ∗ f1l + (d− 5)/(7/3− 5) ∗ f1r;
g2[d ]:=(d− 1/5)/(3/7− 1/5) ∗ f2l + (d− 3/7)/(1/5− 3/7) ∗ f2r;
g3[d ]:=(d + 3)/(−1/3 + 3) ∗ f3l + (d + 1/3)/(−3 + 1/3) ∗ f3r;
g4[d ]:=(d + 11)/(−3 + 11) ∗ f4l + (d + 3)/(−11 + 3) ∗ f4r;
g5[d ]:=(d + 10/7)/(−7/10 + 10/7) ∗ f5l + (d + 7/10)/(−10/7 + 7/10) ∗ f5r;
g6[d ]:=(d + 3)/(−10/7 + 3) ∗ f6l + (d + 10/7)/(−3 + 10/7) ∗ f6r;
g7[d ]:=(d + 7/10)/(−1/3 + 7/10) ∗ f7l + (d + 1/3)/(−7/10 + 1/3) ∗ f7r;

Plot[{59/27 + 7/27 ∗ d− 8/27 ∗ Sqrt[16 + 16 ∗ d + d∧2], g1[d]}, {d, 7/3, 5}];
Plot[{26/27 + 16/27 ∗ d− 4/27 ∗ Sqrt[1 + 16 ∗ d + 16 ∗ d∧2], g2[d]}, {d, 1/5, 3/7}];
Plot[{77/135 + 13/135 ∗ d + 8/135 ∗ Sqrt[1− 62 ∗ d + d∧2], g3[d]}, {d,−3,−1/3}];
Plot[{−1/288 ∗ (323− 214 ∗ d + 35d∧2)/(−1 + d), g4[d]}, {d,−11,−3}];
Plot[{−1/270 ∗ (1097− 1174 ∗ d + 17 ∗ d∧2 + (278− 8 ∗ d) ∗
Sqrt[1− 62 ∗ d + d∧2])/(−4 + 4 ∗ d− Sqrt[1− 62 ∗ d + d∧2]), g5[d]}, {d,−10/7,−7/10}];
Plot[{23/30 + 7/30 ∗ d + 1/15 ∗ Sqrt[1− 62 ∗ d + d∧2], g6[d]}, {d,−3,−10/7}];
Plot[{23/30 + 7/30 ∗ d + 1/15 ∗ Sqrt[1− 62 ∗ d + d∧2], g7[d]}, {d,−7/10,−1/3}];

e1 = Flatten[Solve[D[f1[d]− g1[d], d] == 0, d]]
e2 = Flatten[Solve[D[f2[d]− g2[d], d] == 0, d]]
e3 = Flatten[Solve[D[f3[d]− g3[d], d] == 0, d]]
e4 = Flatten[Solve[D[f4[d]− g4[d], d] == 0, d]]
e5 = Flatten[Solve[D[f5[d]− g5[d], d] == 0, d]]
e6 = Flatten[Solve[D[f6[d]− g6[d], d] == 0, d]]
e7 = Flatten[Solve[D[f7[d]− g7[d], d] == 0, d]]

{d → 4
3 (−6 + 5

√
3)}

32



{d → 1
140 (−70 + 19

√
35)}

{d → 1
3 (93− 56

√
3)}

{d → 1− 4
√

3, d → 1 + 4
√

3}
{d → 1

35 (1085− 134
√

70)}
{d → 31

7 (7− 2
√

14)}
{d → 1

15 (465− 122
√

15)}

err1 = Abs[f1[ 43 (−6 + 5
√

3)]− g1[ 43 (−6 + 5
√

3)]]
err2 = Abs[f2[ 1

140 (−70 + 19
√

35)]− g2[ 1
140 (−70 + 19

√
35)]]

err3 = Abs[f3[ 13 (93− 56
√

3)]− g3[ 13 (93− 56
√

3)]]
err4 = Abs[f4[1− 4

√
3]− g4[1− 4

√
3]]

err5 = Abs[f5[ 1
35 (1085− 134

√
70)]− g5[ 1

35 (1085− 134
√

70)]]
err6 = Abs[f6[ 317 (7− 2

√
14)]− g6[ 317 (7− 2

√
14)]]

err7 = Abs[f7[ 1
15 (465− 122

√
15)]− g7[ 1

15 (465− 122
√

15)]]

N [err1]
N [err2]
N [err3]
N [err4]
N [err5]
N [err6]
N [err7]

Simplify[g1[d]]
Simplify[g2[d]]
Simplify[g3[d]]
Simplify[g4[d]]
Simplify[g5[d]]
Simplify[g6[d]]
Simplify[g7[d]]
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