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This thesis considers dynamical systems that have multiple time scales. The

focus lies on systems with two fast variables and one slow variable. The two-

parameter bifurcation structure of the FitzHugh-Nagumo (FHN) equation is an-

alyzed in detail. A singular bifurcation diagram is constructed and invariant

manifolds of the problem are computed. A boundary-value approach to com-

pute slow manifolds of saddle-type is developed. Interactions of classical in-

variant manifolds and slow manifolds explain the exponentially small turning

of a homoclinic bifurcation curve in parameter space. Mixed-mode oscillations

and maximal canards are detected in the FHN equation. An asymptotic for-

mula to find maximal canards is proved which is based on the first Lyapunov

coefficient at a singular Hopf bifurcation.
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CHAPTER 1

INTRODUCTION

1.1 Fast-Slow systems

The subject of this dissertation is the theory of multiple time scale dynamical

systems. If only two time scales are present the term fast-slow system is com-

monly used. Note that several viewpoints have influenced the development

of the subject starting with asymptotic analysis [93, 37] using techniques like

matched asymptotic expansions [75, 89]. A geometric theory focusing on in-

variant manifolds was developed [42, 71, 73, 1, 106] which is now commonly

known as Fenichel theory due to Fenichel’s seminal work [42]. There was also

significant influence by a group using nonstandard analysis [29, 28, 8, 6, 9, 7].

1.1.1 Basic Terminology

We shall focus on the geometric viewpoint which played a significant role in

understanding bifurcation phenomena. The term “Geometric Singular Pertur-

bation Theory” (GSPT) is used to encompass Fenichel theory and further geo-

metric methods developed over the last three decades in the context of multiple

time scale problems. The general formulation of a fast-slow system of ordinary

differential equations (ODEs) is:

ǫ ẋ = ǫ
dx
dτ
= f (x, y, λ, ǫ) (1.1)

ẏ =
dy
dτ
= g(x, y, λ, ǫ)
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where (x, y) ∈ R
m × R

n are variables, λ ∈ R
p are system parameters and ǫ is a

small parameter 0 < ǫ ≪ 1 representing the ratio of time scales. The functions

f : R
m ×R

n ×R
p ×R→ R

m and g : R
m ×R

n ×R
p ×R→ R

n are usually assumed to

be sufficiently smooth. The variables x are fast and the variables y are slow and

we can change in (1.1) from the slow time scale τ to the fast time scale t = τ/ǫ

which yields:

x′ =
dx
dt
= f (x, y, λ, ǫ) (1.2)

y′ =
dy
dt
= ǫg(x, y, λ, ǫ)

To illustrate the definitions and concepts to be introduced we use the classical

example of Van der Pol’s equation [23, 24, 25] with constant forcing λ ∈ R:

ǫ ẋ = y − x3

3
+ x (1.3)

ẏ = λ − x

Although (1.3) is one of simplest fast-slow systems with a one fast and one slow

variable it exhibits complicated dynamics that can be analyzed using the fast-

slow structure. The first major idea to analyze (1.1)-(1.2) is to consider the sin-

gular limit as ǫ → 0. From equation (1.2) we obtain

x′ = f (x, y, λ,0) (1.4)

y′ = 0

which is system of ODEs parametrized by the slow variables y. We call (1.4) the

fast subsystem or layer equations. Considering the singular limit for (1.1) we

get:

0 = f (x, y, λ,0) (1.5)

ẏ = g(x, y, λ,0)
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System (1.5) is a differential-algebraic equation (DAE) called slow subsystem or

reduced system. The flow of the slow subsystem will be called slow flow and

analogously we also have the fast flow for the fast subsystem. One goal of GSPT

is to use the fast and slow subsystems to understand the dynamics of the full

system (1.1)-(1.2) for ǫ > 0.

1.1.2 Fenichel Theory

The algebraic constraint of (1.5) defines the critical manifold:

C = {(x, y) ∈ R
m × R

n| f (x, y, λ,0) = 0}

Note that it is possible that C is not an actual manifold [84] but we shall not

consider this case here. Points in C are equilibrium points for the fast subsystem

(1.4). In Van der Pol’s equation (1.3) the critical manifold is a cubic curve

CVdP
= {(x, y) ∈ R

2|y = x3/3− x =: c(x)} (1.6)

A subset S ⊂ C is called normally hyperbolic if the m × m matrix (Dx f )(p) of

first partial derivatives with respect to the fast variables has eigenvalues with

nonzero real parts for all p ∈ S ; this condition is equivalent to requiring that

points p ∈ S are hyperbolic equilibria of the fast subsystem (1.4). We call a nor-

mally hyperbolic subset S attracting if all eigenvalues of (Dx f )(p) have negative

real parts for p ∈ S ; similarly S is called repelling if all eigenvalues have positive

real parts. If S is normally hyperbolic and neither attracting nor repelling we

say it is of saddle-type.

Remark: Normal hyperbolicity can be developed in the more general con-

text [39, 40, 41, 64] of normally hyperbolic invariant manifolds M. Intuitively
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the general definition of normal hyperbolicity of M requires that the flow in the

tangential directions to M (“slow”) is dominated by the flow transverse to it

(“fast”).

In Van der Pol’s equation the critical manifold CVdP is normally hyperbolic

away from the local maximum and minimum of the cubic. These two special

points are defined by c′(x) = 0 and given by p± = (±1,∓2/3). At p± normal

hyperbolicity fails and we call these points fold points. Note that the fold points

are saddle-node bifurcation (i.e. fold bifurcation) points of the fast subsystem

(1.4). The fold points naturally decompose the critical manifold

CVdP
= S a,− ∪ {p−} ∪ S r ∪ {p+} ∪ S a,+

where the three branches of CVdP are

S a,−
= C ∩ {x < −1}, S r

= C ∩ {−1 < x < 1}, S a,+
= C ∩ {x > 1}

Observe that Ca,± are attracting whereas S r is repelling since

∂

∂x
f (x, y, λ,0) = 1− x2

=























< 0 for |x| > 1

> 0 for |x| < 1

The general definition of a fold point p∗ is to require that the critical manifold

C is locally parabolic i.e. f (p∗, λ,0) = 0, (Dx f )(p∗, λ,0) has rank m − 1 with left

and right null vectors w and v, w · [(Dxx f )(p)(v, v)] , 0 and w · [(Dy f )(p)] , 0.

For Van der Pol’s equation this just means that f (p∗, λ,0) = 0, fx(p∗, λ,0) = 0,

fxx(p∗, λ,0) , 0 and fy(p∗, λ,0) , 0. In principle, the critical manifold can have

more degenerate non-normally hyperbolic points which we shall not consider

here.
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(a) λ = 0: Singular solution in black.

−2 −1 0 1 2
−1

0

1

x

y

C

(b) λ = 1: Equilibrium point at p+.

Figure 1.1: The critical manifold (blue) C = CVdP for Van der Pol’s equation
(1.3) together with the y-nullcline (dashed red) is shown. Dou-
ble arrows indicate the fast flow and single arrows the slow
flow.

Away from fold points the implicit function theorem applied to f (x, y, λ,0) =

0 locally provides a function h(y) = x so that C can be expressed as a graph.

Hence the slow subsystem (1.5) can be more succinctly expressed as:

ẏ = g(h(y), y, λ,0) (1.7)

We shall also refer to the flow induced by (1.5),(1.7) as the slow flow. In Van der

Pol’s equation we could solve the cubic equation y = c(x) for x on S a,−, S r and S a,+

to obtain (1.7). It is more convenient in this case to use an alternative procedure

to derive the slow flow. We implicitly differentiate f (x, y, λ,0) = y− c(x) = 0 with

respect to τ, then

ẏ = ẋx2 − ẋ = ẋ(x2 − 1)

Combining this result with the equation for ẏ we get:

(x2 − 1)ẋ = λ − x or ẋ =
λ − x
x2 − 1

(1.8)

Note that the slow flow is not well-defined for x = ±1 as long as λ , ±1. In

particular, existence and uniqueness theory for ODEs does not apply in this

scenario. The same idea for deriving the slow flow also works for a general
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fast-slow system and yields:

ẋ = (Dx f )−1(Dy f )g

where all mappings are evaluated for (x, c(x), λ,0) and c : R
m → R

n parametrizes

C. To relate the dynamics of the slow flow to the dynamics of the full system for

ǫ > 0 the next theorem is of fundamental importance.

Theorem 1.1.1 (Fenichel’s Theorem, Part 1). Assume that f , g are sufficiently

smooth. Suppose S = S 0 is a compact normally hyperbolic submanifold of the criti-

cal manifold C. Then for ǫ > 0 sufficiently small the following holds:

(F1) There exists a locally invariant manifold S ǫ diffeomorphic to S 0. Local invariance

means that S ǫ can have boundaries through which trajectories enter or leave.

(F2) S ǫ has a distance O(ǫ) from S 0.

(F3) The flow on S ǫ converges to the slow flow as ǫ → 0.

(F4) Given r ∈ N ∪ {0} there exists ǫ0 > 0 such that that S ǫ is Cr-smooth for all

ǫ ∈ (0, ǫ0].

(F5) S ǫ is normally hyperbolic and has the same stability properties with respect to the

fast variables as S 0 (attracting, repelling or saddle-type).

(F6) For fixed ǫ > 0, S ǫ is usually not unique but all manifolds satisfying (F1)-(F5) lie

at a Hausdorff distance O(e−K/ǫ) from each other for some K > 0, K = O(1).

We call a manifold S ǫ a slow manifold. Note that all asymptotic notation refers to ǫ → 0.

Remark: We will often apply the convention that objects in the singular limit

have sub- or superscript 0 whereas the associated perturbed objects have sub-
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or superscript ǫ.

Note that slow manifolds are defined by asymptotic conditions like (F2).

Furthermore, their non-uniqueness (F6) and finite smoothness (F4) are not sur-

prising as the proof constructs them as center-type manifolds intersecting the

attracting and repelling manifolds of the fast subsystem; cf. [16, 42, 103]. In

addition to critical and slow manifolds we can also consider their associated at-

tracting and repelling manifolds. If S 0 is normally hyperbolic we view points

on it as hyperbolic equilibria of the fast subsystem and define

W s(S 0) =
⋃

p∈S 0

W s(p), Wu(S 0) =
⋃

p∈S 0

Wu(p)

Sometimes we refer to W s(S 0) and Wu(S 0) as stable and unstable manifolds to

the critical manifold.

Theorem 1.1.2 (Fenichel’s Theorem, Part 2). For ǫ > 0 sufficiently small there exist

manifolds W s(S ǫ) and Wu(S ǫ). The conclusions (F1)-(F6) hold for W s(S ǫ) and Wu(S ǫ)

if we replace S ǫ and S 0 by W s(S ǫ) and W s(S 0) (or similarly by Wu(S ǫ) and Wu(S 0)).

In addition to Fenichel’s Theorem we can also find coordinate changes that

simplify a fast-slow system considerably near a critical manifold.

Theorem 1.1.3. (Fenichel Normal Form, [42, 72]) Suppose the origin 0 ∈ C is a nor-

mally hyperbolic point with ms stable and mu unstable fast directions. Then there exists

a smooth invertible coordinate change (x, y) 7→ (a, b, v) ∈ R
ms+mu+n so that a fast-slow

system (6.2) can be written as:

a′ = Λ(a, b, v, ǫ)a

b′ = Γ(a, b, v, ǫ)b (1.9)

v′ = ǫ(m(v, ǫ) + H(a, b, v, ǫ)ab)
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where Λ, Γ are matrix-valued functions and H is bilinear and given in coordinates by

Hi(a, b, v, ǫ)ab =
ms
∑

r=1

mu
∑

s=1

Hirsarbs (1.10)

1.1.3 Canards

We shall now consider different types of trajectories in Van der Pol’s equation.

Consider first the case λ = 0 (“unforced Van der Pol equation”). For ǫ = 0

the fast and slow flows are indicated in Figure 1.1. A singular orbit can be

constructed by concatenating fast and slow flow segments as shown in Figure

1.1(a); note that singular orbits are also called candidates. The singular orbit

follows the slow flow on CVdP, then reaches a fold point, “jumps” and follows

the fast subsystem until it reaches another branch of the critical manifold. The

same mechanism returns the orbit to the initial branch of the critical manifold. It

can be shown [93, 86] that the singular orbit perturbs for ǫ > 0 and we have the

classical scenario of relaxation oscillations. Note that (x, y) = (0,0) is an unstable

focus for λ = 0. A direct linear stability analysis shows that for λ > 1 the unique

equilibrium point (x, y) = (λ, λ3/3 − λ) =: q is a stable focus and undergoes su-

percritical Hopf bifurcation at λH = 1. The precise analysis of the orbit structure

of Van der Pol’s equation between the stable focus region and relaxation oscil-

lations was one of the first major steps in the theory of fast-slow systems.

Figure 1.2(a) shows numerical continuation results for ǫ = 0.05. The key

feature is that the amplitude of the periodic orbits generated in the Hopf bi-

furcation grows rapidly in an exponentially small interval in parameter space.

This process is called canard explosion and we refer to the Hopf bifurcation as
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Figure 1.2: (a) Some periodic orbits obtained from numerical continuation
of (1.3) for ǫ = 0.05. The green orbit is a typical small limit cycle
near the Hopf bifurcation whereas all the red orbits occur in a
very small parameter space interval at λ ≈ 0.993491. General
sketch of bifurcation diagrams for supercritical (b) and subcrit-
ical (c) singular Hopf bifurcation at λ = λH. Here A denotes
the amplitude if the limit cycle. In Van der Pol’s equation (b)
applies.

singular Hopf bifurcation. In particular, the red periodic trajectories shown in

Figure 1.2(a) follow the repelling slow manifold S r
ǫ for a long time.

A trajectory of a general fast-slow system is called a canard if it follows a

repelling slow manifold for a time that is O(1) on the slow time scale. A tra-

jectory is called a maximal canard if it lies in the intersection of an attracting

and a repelling slow manifold; note that this definition requires that we extend

slow manifolds obtained by Fenichel’s Theorem under the flow of the differen-

tial equation. One often calls a fold point p∗ ∈ C a folded singularity if it is an

equilibrium point of the desingularized slow flow; see Figure 1.1(b). At a folded

singularity the slow flow is well defined and trajectories can continue from an

attracting part of the critical manifold to a repelling part or vice versa. The

problem with the previous definition is that folded singularities do not persist

9



for ǫ > 0. Therefore they have no immediate meaning in the full system. Hence

one has to be very careful not to confuse folded singularities with equilibrium

points of the full system.

The canard explosion in Van der Pol’s equation occurs O(e−K/ǫ)-close in pa-

rameter space to the point where the manifolds S a,+
ǫ and S r

ǫ intersect in a max-

imal canard. A folded singularity occurs for λ = 1 at p+ = (1,−2) when the

unique equilibrium coincides with the fold point; see Figure 1.1(b). Note that

λ = 1 = λH is also the singular Hopf bifurcation point of the system but that this

situation is not generic. In fact, in a generic situation the singular Hopf bifur-

cation point is displaced by O(ǫ) in parameter space from the folded singularity

which can be seen by modifying the slow equation to

y′ = ǫ(λ − x + ay)

for a , 0. The ideas of folded singularities and singular Hopf bifurcation can be

extended to general fast-slow systems and we now summarize some of the key

components of each concept starting with singular Hopf bifurcation:

• A singular Hopf bifurcation occurs at λ = λH(ǫ) which is O(ǫ)-close in pa-

rameter space to a folded singularity at λ = λ∗.

• The periodic orbits generated in the bifurcation undergo a canard explo-

sion. A maximal canard orbit exists for λ = λc(ǫ) which is O(ǫ)-close in

parameter space to the folded singularity.

• In the singular limit we have λH(0) = λ∗ = λc(0).

• The system has a pair of singular eigenvalues [13] for the linearized sys-

tem on the 2-dimensional center manifold [88, 54] at the Hopf bifurcation
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point:

µ(λ; ǫ) = σ(λ; ǫ) + iΓ(λ; ǫ)

so that σ(λH; ǫ) = 0, σλ(λH; ǫ) , 0 for any ǫ > 0 sufficiently small and

lim
ǫ→0
Γ(λH; ǫ) = ∞ on the slow time scale τ

or lim
ǫ→0
Γ(λH; ǫ) = 0 on the fast time scale t

A detailed dynamical analysis of canard explosion and the associated singular

Hopf bifurcation using geometric or asymptotic methods exists for planar fast-

slow system [83, 86, 4, 5, 37, 36]. For this case the bifurcation diagrams for super-

and subcritical Hopf bifurcation are shown in Figure 1.2(b)-(c). A summary of

some of the results is given in the next theorem.

Theorem 1.1.4 (Canard Explosion in R
2). Suppose a planar fast-slow system has a

generic fold point p∗ = (xp, yp) ∈ C:

f (p∗, λ,0) = 0, fx(p∗, λ,0) = 0, fxx(p∗, λ,0) , 0, fy(p∗, λ,0) , 0 (1.11)

and that the fold point is non-degenerate with g(p∗, λ,0) , 0 for λ , 0. Assume the

critical manifold is locally attracting for x < xp and repelling for x > xp and there exists

a folded singularity for λ = 0 at p∗:

g(p∗,0,0) = 0, gx(p∗,0,0) , 0, gλ(p∗,0,0) , 0 (1.12)

Assuming without loss of generality that gx(p∗,0,0) > 0 (reversing time if necessary)

we conclude that singular Hopf bifurcation and canard explosion occurs. The Hopf

bifurcation occurs at:

λH = H1ǫ + O(ǫ3/2) (1.13)

The system has a maximal canard at λc for

λc = (H1 + K1)ǫ + O(ǫ3/2) (1.14)
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The Hopf bifurcation is supercritical for K1 > 0 and subcritical for K1 < 0. The coeffi-

cients H1 and K1 can be calculated explicitly from normal form transformations [86] or

by considering the first Lyapunov coefficient of the Hopf bifurcation [87].

Remark: The expansions in (1.13)-(1.14) are in terms of the asymptotic se-

quence {ǫ j/2}∞j=0.

1.2 Overview

1.2.1 Structure

Chapters 1-2 are introductory and provide the necessary background from the

theory of fast-slow systems with a particular focus on the Exchange Lemma.

The research contribution of this thesis consists of Chapters 3-6. Each of these

chapters consists of a journal publication. The chronological ordering of these

chapters has been maintained i.e. Chapter 3 was completed and submitted first

and Chapter 6 was finished and submitted last. We hope that this also shows

how the research process evolved for this PhD thesis. The papers in Chapters

3-6 have been kept in their original form with a few omissions in Chapter 4. For

each paper we have added a section titled “Additions”. These sections consist of

ideas that did not appear in the journal publications such as additional compu-

tations or new analytical calculations. We have included these details to present

a more complete picture of each part of the PhD project. This structure of the

thesis shows clearly how the results were obtained. Also Chapters 3-6 can be

read independently if only a particular result should be of interest to the reader.
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However this thesis will never read “smoothly” from the first to the last line

as some repetitions occur and no global reorganization of the material has been

carried out. Nonetheless the results which are repeated within Chapters 3-6 are

very important! Hence we hope that the added bit of reinforcement learning

might be actually beneficial to the reader.

1.2.2 Main Results

Here we give an overview of the main results of this thesis and provide the

references to the journal publications of Chapters 3-6.

1. Chapter 3, [56]: A detailed description of the FitzHugh-Nagumo equation

and known results about its bifurcations is given. The fast-slow decompo-

sition of the system is analyzed for ǫ = 0. A transformation into a three-

time scale system is introduced and is used to investigate canards and

periodic orbits in the system. Hamiltonian dynamics is used to describe

homoclinic orbits representing slow waves and Lin’s method is used to

calculate the singular limit location of fast waves. The concept of singu-

lar bifurcation diagram is introduced and the diagram for the FitzHugh-

Nagumo equation is computed. It is shown that the CU-bifurcation struc-

ture for ǫ > 0 converges as ǫ → 0 to the singular limit diagram. For this

purpose a specialized numerical splitting method is developed.

2. Chapter 4, [55]: An algorithm to calculate slow manifolds of saddle-type

(SMST) is developed. It is based on cubic Hermite interpolation. The er-

ror for a linear test problem is calculated and the algorithm is applied to

several examples. The main example is the FitzHugh-Nagumo equation
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where the algorithm can be used to calculate fast and slow waves for ǫ > 0.

This is particularly useful to find an initial starting orbit for a homoclinic

orbit continuation algorithm.

3. Chapter 5, [57]: The CU bifurcation structure for ǫ > 0 is investigated in

more detail. It is shown that the apparent termination of the homoclinic

C-curve is caused by a tangency between the unstable manifold of a slow

manifold Wu(Cl,ǫ) and the stable manifold of an equilibrium point W s(q).

All the involved manifolds have been calculated. Wu(Cl,ǫ) was obtained

using the SMST algorithm for the slow manifold and forward integration.

W s(q) was calculated via backward integration and also via a boundary

value approach. A two-dimensional map model of the Poincaré return

map is introduced to describe the dynamics near the Shil’nikov homo-

clinic orbit. Further observations include the calculation of the location

of a canard explosion for ǫ > 0 and the existence of MMOs that are not

generated in a tubular neighborhood of the fast or slow waves.

4. Chapter 6, [87]: The unfolding of a planar singular Hopf bifurcation is

known. It was shown by Krupa and Szmolyan [86] that the location of

the maximal canard can be calculated up to order O(ǫ3/2) using a special

normal form transformation and the blow-up method. We notice that the

special normal form transformation is not necessary and calculate a for-

mula in non-blow-up coordinates for the maximal canard location. Then

we relate this formula to the first Lyapunov coefficient at the singular Hopf

bifurcation and show that standard bifurcation software, such as MatCont

[46], can be used to locate the maximal canard. The results are demon-

strated for the Van der Pol equation and the FitzHugh-Nagumo equation.
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CHAPTER 2

TRACKING INVARIANT MANIFOLDS

In the following chapter we shall restrict to a fast-slow system

ǫ ẋ = f (x, y, ǫ)

ẏ = g(x, y, ǫ) (2.1)

where (x, y) ∈ R
m+n. We make the standing assumption that the critical manifold

C0 = C is normally hyperbolic, i.e. for all (x, y) ∈ C it follows that Dx f (x, y,0) has

rank m. By Fenichel’s Theorem this implies that the associated slow manifold

Cǫ is also normally hyperbolic for ǫ sufficiently small. This assumption shall

sometimes be repeated in important theorems but will assumed to hold in any

scenario we describe in this chapter if we do not explicitly state any assumptions

on C. The main goal of this chapter is to show how the geometric theory of fast-

slow systems can be used to prove the existence of homoclinic and heteroclinic

orbits.

2.1 Simple Jumps and Transversality

Since the critical manifold C0 = C is normally hyperbolic we can locally write it

as a graph C = {(h(y), y) ∈ R
m+n} and consider the slow flow

ẏ = g(h(y), y,0) (2.2)

If the slow flow (2.2) has two hyperbolic equilibrium points p = p0 and q = q0

there might be a heteroclinic connection between p and q. The situation is

shown in Figure 2.1. In Figure 2.1 we assume a transversal intersection of the

stable manifold W s(p) and the unstable manifold Wu(q) for the equilibria of the

15



slow flow. In particular the manifolds are stable and unstable manifolds with

respect to equation (2.2).

q pWu(q)

W s(p)

C = C0

Figure 2.1: The phase space is R
4 with three slow variables and one fast

variable. The critical manifold C is a solid ball D3 ⊂ R
4. The

equilibria p, q ∈ D3 are shown together with the transversal
intersection of their stable and unstable manifolds W s(p) and
Wu(q) for the slow flow (2.2). The transversal intersection gives
a heteroclinic connection. The fast slow is indicated by double
arrows and is directed toward C.

Perturbing the system for 0 < ǫ ≪ 1 should also yield a heteroclinic con-

nection between two equilibria of the full system (2.1). This can be justified

by Fenichel’s Theorem as C0 = C is normally hyperbolic: C perturbs to a slow

manifold Cǫ , the flow on Cǫ is close to the slow flow on C and the stability of

transversal intersection implies that the flow on the slow manifold still has a

heteroclinic connection between two slightly perturbed equilibrium points pǫ

and qǫ . The next step is to ask for the best possible generalizations of the pre-
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vious situation. Clearly we also want to include the case when a heteroclinic

or homoclinic orbit involves fast and slow dynamics. The simplest case for this

situation is to assume the existence of two n-dimensional normally hyperbolic

invariant manifolds C1 and C2 that are contained in the critical manifold C of

(2.1). Suppose C1 and C2 contain hyperbolic invariant sets P1 resp. P2 for the

slow flow (2.2); to simplify the abstract setting one can simply think of P1 and

P2 as equilibrium points. The fast subsystem will be used to find a heteroclinic

orbit between P1 and P2.

Remark: All the results that follow are going to be applicable in the case

C1
= C2 (and P1

= P2) which yields homoclinic orbits. Therefore we restrict the

discussion, for now, to the case of heteroclinic orbits.

The stable and unstable manifolds of P1 and P2 with respect to the slow flow

have to be defined. Without loss of generality let us assume we are interested in

the unstable manifold of P1 and the stable manifold of P2 defined by:

Wu(P1) = {p ∈ C1 : φslow
τ (y)→ P1 as τ→ −∞}

W s(P2) = {p ∈ C2 : φslow
τ (y)→ P1 as τ→ ∞}

where φslow
τ is the slow flow for equation (2.2). Furthermore certain submani-

folds of the stable and unstable manifolds of the critical manifold C have to be

defined

N1
=

⋃

p∈Wu(P1)

{q ∈ R
n+m : φ f ast

t (q)→ p as t → −∞}

N2
=

⋃

p∈W s(P2)

{q ∈ R
n+m : φ f ast

t (q)→ p as t → ∞} (2.3)
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where φ f ast
t is the flow of the fast subsystem given by

x′ = f (x, y,0)

y′ = 0

and the y-coordinates to be used for a particular flow in (2.3) is determined by

the y-coordinates of p. Instead of requiring a transversal intersection of mani-

folds defined entirely by the slow flow we require a transversal intersection of

N1 and N2. The situation is shown in Figure 2.2.

Wu(P1)
W s(P2)

P1

P2

N1

N2

C1

C2

Figure 2.2: Transversal intersection of N1 and N2 yields a heteroclinic con-
nection between P1 and P2 consisting of two slow segments
and one fast segment.

The heteroclinic orbit consists of a trajectory segment of the slow flow on C1

starting at P1. This segment connects to a trajectory of a fast subsystem which

lies in the transversal intersection of N1 and N2. Then the last segment lies on C2

connecting to P2. The orbit we obtain in this way is also called a singular orbit

as it consists of trajectory segments obtained in the singular limit ǫ = 0.
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Theorem 2.1.1. Suppose P1 and P2 are hyperbolic invariant sets for the slow flow

and that two normally hyperbolic invariant manifolds N1 and N2, as defined by (2.3),

intersect transversally. Then there exists ǫ0 such that for all ǫ ∈ (0, ǫ0] the fast-slow

system (2.1) has a transversal heteroclinic connection/orbit between P1 and P2. If N1
=

N2 and P1
= P2 there exists a homoclinic orbit to P1

= P2.

Proof. By Fenichel’s Theorem the manifolds N1 and N2 perturb to slow unstable

and slow stable manifolds N1
ǫ resp. N2

ǫ . The stability of transversal intersection

implies that N1
ǫ and N2

ǫ still intersect transversally for ǫ sufficiently small. The

result follows. �

From the proof of Fenichel’s Theorem, it is clear that we can weaken the

hypotheses on N1 and N2 slightly and replace the invariance assumptions on N1

and N2 by the following:

• N1 is a compact overflowing invariant manifold with boundary for the fast

flow.

• N2 is a compact inflowing invariant manifold with boundary for the fast

flow.

Although this is only a slight modification, it is absolutely necessary since

sometimes one is confronted with systems of the form:

ǫ ẋ = f (x, y, µ, ǫ)

ẏ = g(x, y, µ, ǫ) (2.4)

µ̇ = 0
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where µ ∈ R
p are parameters. Usually it is assumed that µ is in some compact

region in R
p. The extended system with the trivial equation µ̇ = 0 does not

satisfy the invariance assumptions but it is quite easy to modify the equation

µ̇ = 0 near the boundary of the manifolds

Ñ i := {(N i(µ), µ)} for i = 1,2

to make the manifold Ñ1 overflowing invariant and Ñ2 inflowing invariant. The

reason why the extended system (2.4) is important is the problem that for some

fixed µ0 the manifolds N1 and N2 might be tangential. Varying µ can poten-

tially break this tangential intersection to make it transverse for Ñ1 and Ñ2. This

naturally leads to the main problem in applying Theorem 2.1.1 for a concrete

example: the verification of the transversality hypothesis might be very diffi-

cult. This will be our next step. Suppose we are in the situation described in

Theorem 2.1.1. Since N1 and N2 intersect there exists a value y = y0 such that in

the fast subsystem

x′ = f (x, y0,0)

there is a heteroclinic orbit between two equilibrium points, say p1 =

(x1(y0), y0) ∈ Wu(P1) and p2 = (x2(y0), y0) ∈ W s(P2). Denote the heteroclinic orbit

by (x0(t), y0) ∈ R
m+n. The intersection between N1 and N2 at a point p = (x0(t), y0)

for some t is transverse if and only if

TpN1 ⊕ TpN2
= R

m+n

Direct dimension counting always gives:

dim(TpN1 ⊕ TpN2) = dim(TpN1) + dim(TpN2) − dim(TpN1 ∩ TpN2)

If we define

d = dim(TpN1) + dim(TpN2) − m − n (2.5)
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we see that N1 and N2 intersect transversally if and only if

d = dim(TpN1 ∩ TpN2)

Recall that we have assumed that the heteroclinic connection (x0(t), y0) occurring

in the fast subsystem is one-dimensional. This is equivalent to the assumption

that x′0 is the only (up to a scalar multiple) bounded solution to the variational

equation:

x′ = Dx f (x0(t), y0,0)x

i.e. there is only one solution that does not diverge from the heteroclinic orbit

in forward or backward time: the heteroclinic orbit itself. So we should not be

surprised if the adjoint equation to the variational equation is relevant as well.

Let ψ denote the unique solution to the adjoint equation:

ψ′ = −(Dy f (x0(t), y0,0))Tψ (2.6)

Again uniqueness is assumed up to a scalar multiple. Next we can state a very

important theorem.

Theorem 2.1.2. Let N1 and N2 be normally hyperbolic manifolds consisting of the

unstable fibers of W1(P1) and the stable fibers of W2(P2) respectively. Let π denote the

projection onto the y-coordinates. Then N1 and N2 intersect transversally if and only if

there are exactly d − 1 linearly independent solutions ξ ∈ Ty0π(Wu(P1)) ∩ Ty0π(W s(P2))

for the equation

M · ξ = 0 (2.7)

where M ∈ R
n is defined by

M =
∫ ∞

−∞
ψ(t) · Dy f (x0(t), y0,0)dτ (2.8)
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We shall not prove this result but refer to [103]. Note that Szmolyan in [103]

uses a technical result contained in [95]. To illustrate how the result works we

will discuss an example. We shall need that the solution of the adjoint varia-

tional equation (2.6) in the case of two fast variables n = 2 is given by:

ψ(t) = e−
∫ t
0 tr(Dx f (x0(s),y0,0))ds(−x′2(t), x

′
1(t))

T (2.9)

The example to be discussed is a toy model to illustrate the necessary computa-

tions in a simple setting.

Example 2.1.3. Consider the (2,1)-fast-slow system

ǫ ẋ1 = 1− (x1)
2

ǫ ẋ2 = y + x1x2 (2.10)

ẏ = y2 − (x1)
2

The critical manifold C0 is easily found and consists of two lines L±:

C0 = {(x1, x2, y) ∈ R
3 : x1 = −1 and y = x2 or x1 = 1 and y = −x2}

= Lx1=−1 ∪ Lx1=+1 =: L− ∪ L+

A projection into the (x1, y)-plane of the situation with the singular flows of the fast and

slow subsystems is shown in Figure 2.3.

In Figure 2.3 we have shown a singular heteroclinic orbit which connects the two

saddle equilibria p1 = (−1,1,1) and p2 = (1,1,−1). The unstable manifold of the point

p1 is L− and the stable manifold of p2 is L+. Then define the manifolds N1 and N2 as two

planes

N1 = {(x1, x2, x2) ∈ R
3 : x1 ∈ [−1,1]}

N2 = {(x1, x2,−x2) ∈ R
3 : x1 ∈ [−1,1]}
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p1

p2

x1

y

L− L+

Figure 2.3: Projection of the fast-slow structure of (2.10) into the (x1, y)-
plane. The singular heteroclinic connection between the two
equilibrium points is shown in red.

These are precisely the manifolds checked for transversal intersection in Theorem 2.1.2;

N1 is the part of the unstable manifold of L− and N2 is part of the unstable manifold of

L+. Geometrically it is clear that they intersect transversally in the segment

H f ast = {x1 ∈ [−1,1], x2 = 0, y = 0}

The segment H f ast is a heteroclinic connection for the fast subsystem with y = y0 =

0; see Figure 2.3. Hence Theorem 2.1.1 implies that the singular heteroclinic orbit H

consisting of

{x1 = −1, x2 ∈ [0,1], y = x2} ∪ H f ast ∪ {x1 = 1, x2 ∈ [0,1], y = −x2}

persists for ǫ > 0 sufficiently small and (2.10) has a heteroclinic orbit. The geometric ob-

servation can be verified using the tools of 2.1.2. First one has to calculate the dimension
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d as given in equation (2.5). Let p be a point on the heteroclinic orbit H then

d = dim(TpN1) + dim(TpN2) − m − n = 2+ 2− 2− 1 = 1

The equation M·ξ = 0 is a scalar equation and we aim to show that it has d−1 = 1−1 = 0

non-trivial solutions i.e. that M , 0. Let H f ast be denoted in parametrized form by

(x1(t), x2(t), y0) = (x0(t),0); note that we formally should denote e.g. x1(t) by (x1)0(t) as

it is a coordinate along the heteroclinic orbit but we drop the 0 subscript for notational

convenience. The solution of the adjoint equation is obtained from (2.9):

ψ(t) = e
∫ t
0 x1(s)ds(−y0 − x1(t)x2(t),1− (x1(t))

2)T (2.11)

Furthermore a direct calculation yields:

Dy f (x0(t), y0,0) = (0,1)T

Putting the previous results into (2.8) gives M:

M =

∫ ∞

−∞
ψ(t) · Dy f (x0(t), y0,0)dt

=

∫ ∞

−∞
e
∫ t
0 x1(s)ds(−x1(t)x2(t),1− x1(t)

2)T · (0,1)T dt

=

∫ ∞

−∞
e
∫ t
0 x1(s)ds(1− x1(t)

2)dt

Note that x1(t) describes the fast segment of the heteroclinic orbit lying between x1 = −1

and x1 = 1. Hence 1− x1(t)2 > 0 for all t ∈ R. The exponential function is positive as

well and we conclude that M > 0. This implies the existence of the heteroclinic orbit.

Unfortunately Theorem 2.1.2 does not cover all cases occurring in practice.

In the next section we shall give a more detailed introduction to the FitzHugh-

Nagumo equation and why certain homoclinic orbits are much more difficult to

obtain.
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2.2 The FitzHugh-Nagumo Equation

The FitzHugh-Nagumo equation is a simplification of the Hodgkin-Huxley

model for an electric potential of a nerve axon [65]. The first version was de-

veloped by FitzHugh in [43] and is a two-dimensional system of ODEs:

ǫu̇ = v − u3

3
+ u + p (2.12)

v̇ = −1
s
(v + γu − a)

where u is the electric potential and v an auxiliary variable. Note that for param-

eter values a = γ = p = 0 and s = 1 we obtain the unforced van der Pol equation.

A detailed summary of the bifurcations of (2.12) can be found in [97]. By tak-

ing diffusion terms into account in the conduction process one obtains another

version of the FitzHugh-Model model due to Nagumo and his co-workers [94]:






















uτ = δuxx + fa(u) − w

wτ = ǫ(u − γw)
(2.13)

where fa(u) = u(u − a)(1 − u) and γ, δ and 0 < a < 1/2 are parameters. A good

introduction to the derivation and problems associated with (2.13) can be found

in [62]. Suppose we assume a traveling wave solution to (2.13) and set u(x, τ) =

u(x+ sτ) =: u(t) and w(x, τ) = w(x+ sτ) =: w(t), where s represents the wave speed.

By the chain rule we get uτ = su′, uxx = u′′ and wτ = sw′. Now set v = u′ and

substitute into (2.13):

u′ = v

v′ =
1
δ

(sv − fa(u) + w) (2.14)

w′ =
ǫ

s
(u − γw)

Observe that a homoclinic orbit of (2.14) corresponds to a traveling pulse solu-

tion of (2.13). Changing from the fast time t to the slow time τ and re-labeling
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variables x1 = u, x2 = v and y = w we get a fast-slow system in standard form:

ǫ ẋ1 = x2

ǫ ẋ2 =
1
δ

(sx2 − x1(1− x1)(x1 − a) + y) (2.15)

ẏ =
1
s
(x1 − γy)

For now we shall refer to (2.15) as “the” FitzHugh-Nagumo equation. The equi-

librium points of (2.15) are given by the intersection of the y-nullcline y = x1/γ

and the critical manifold

C0 = {(x1,0, fa(x1)) ∈ R
3 : where fa(x1) = x1(1− x1)(x1 − a)}

Furthermore we can find the fold points by solving the equation f ′a(x1) = 0. This

yields:

x1,± =
1
3

(1+ a ±
√

1− a + a2)

Obviously the x2-coordinates of the folds are zero and the y-coordinates are

fa(x1,±). We shall denote the folds by x± = (x1,±,0, fa(x1,±)). They naturally split

the critical manifold into three branches:

Cl = {x1 < x1,−} ∩C0

Cm = {x1,− < x1 < x1,+} ∩C0

Cr = {x1,+ < x1} ∩C0

Theorems 2.1.1 and 2.1.2 can be used to prove the existence of a heteroclinic

orbit if there is more than one equilibrium point for (2.15) using the following

strategy:

1. Assume that γ is selected so that three hyperbolic equilibrium points exist.

Denote the equilibrium point on Cl by p1 = (0,0,0) and the equilibrium
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point on Cr by p2. Both points are saddles and the goal is to prove that a

singular heteroclinic orbit between p1 and p2 persists.

2. Observe that we can adjust the parameters to obtain a situation with three

equilibrium points

3. Extend the system by the equation s′ = 0. We are in the case where the

parameter is used to build a transversal intersection of manifolds as de-

scribed in the remarks after Theorem 2.1.1.

4. Define N1 for p1 and N2 for p2, one should have dim(N1) = 2 and dim(N2) =

3.

5. We can use the following fact [91]: There exists s = (1 − 2a)/
√

2 such that

the fast subsystem at y = y0 = 0 has a heteroclinic connection between the

two saddles on Cl and Cr.

6. Observe that it suffices to prove that the second component of M in (2.8) is

nonzero.

Now we move on to introduce the scenario in which Theorems 2.1.1 and

2.1.2 no longer work to find particular global orbits in the FitzHugh-Nagumo

equation. If we choose γ large enough it is clear that the FitzHugh-Nagumo

equation has only one equilibrium point, namely (0,0,0). It can be checked that

this is the case for γ = 1. Let us also assume from now on for simplicity that

δ = 1 and a = 1/10; hence we simply write f1/10(x1) = f (x1). It is easy to see

from the linearization of (2.15) at (0,0,0) that the equilibrium is of saddle-type

with 1 unstable and 2 stable directions. The fold points can be described more

explicitly:

x1,± =
1
30

(

11±
√

91
)

or numerically: x1,+ ≈ 0.6846, x1,− ≈ 0.0487
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The geometry of the system for one equilibrium point is illustrated in Figure 2.4.

x1

x2

y

y-nullcline

y = constant plane

fold x−

fold x+

C

Figure 2.4: Critical manifold C of the FitzHugh-Nagumo equation. The
planes y = constant are the domains of the fast subsystems. The
equilibrium is located at the origin.

The sign of the y-derivative is given by (x1 − y). Since it is positive below

y = x1 and negative above it we observe that the slow flow on C is directed

toward the unique equilibrium point on Cl. The slow flow is pointing in the

positive y-direction on the branches Cm and Cr. The fast subsystem is:

x′1 = x2

x′2 = sx2 − x1(1− x1)(x1 − a) + y (2.16)

The phase spaces of the fast subsystems, parametrized by the slow variable y,

should be viewed as planes y = constant. We will see that it no longer suffices

to consider only one particular fast subsystem. There are three different regions

for the fast subsystem depending on the number of equilibrium points. We have

one equilibrium for (2.16) when the plane intersects C once (i.e. for y > f (x1,+) or
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y < f (x1,−)), two equilibrium points if the plane is tangent to C at a fold point (i.e.

y = f (x1,±)) and three equilibria if we choose y so that the plane intersects C three

times; see Figure 2.4. Let us focus on the last case and stay away from the fold

points. In this case the fast subsystem has two saddle equilibria located on Cl

and Cr and an unstable spiral on Cm. It was shown analytically in [2] that there

exists a wave speed s∗ such that (2.16) has a heteroclinic connection between the

two saddles at y = 0 and for a value of y∗ with 0 < y∗ < f (x1,−). The heteroclinic

connection at y = 0 involves the unstable manifold of the equilibrium point

(0,0) on Cl which is also the unique equilibrium of the full system. Knowing

the directions of the slow flow on each of the pieces of the critical manifold we

can now draw a trajectory for full system consisting of alternating pieces of fast

and slow motion as shown in Figure 2.7. Looking at Figure 2.7 we are tempted

to conclude that the FitzHugh-Nagumo equation has a homoclinic orbit as we

have just exhibited one in the singular limit. Unfortunately it does not suffice to

check just transversality conditions between the unstable manifold Wu(Cl) of the

left branch and the stable manifold W s(Cr) of the right branch of C. In principal

we want to conclude the result for the slow manifolds Cl,ǫ and Cr,ǫ and their un-

stable and stable manifolds for 0 < ǫ ≪ 1 and ǫ sufficiently small as in Section

2.1.

The problem is that our singular orbit now contains two jumps. In this case

we have to follow the unstable manifold M of the equilibrium point until it

reaches a neighborhood close to the slow manifold Cr,ǫ . Then we must follow M

as it evolves near (but not on!) Cr,ǫ . The next step is to consider the exit of M in a

neighborhood of the second jump point at height y = y∗ and then we hope that

we can follow it back near Cl,ǫ to conclude that it reaches the stable manifold of

29



(0,0,0).

2.3 The Exchange Lemma I

The Exchange Lemma was initially proved by Jones and Kopell [68]. We shall

mainly follow their original paper and an expository presentation in [74]. Recall

from the problem of finding homoclinic orbits in the FitzHugh-Nagumo with

more than one jump discussed in the previous section that we have to track an

invariant manifold in phase phase. For the general situation we start with a

fast-slow system

ǫ ẋ = f (x, y, ǫ)

ẏ = g(x, y, ǫ) (2.17)

with x ∈ R
m and y ∈ R

n. We include in (2.17) possible parameters in the sys-

tem in the vector y as slow variables. In the FitzHugh-Nagumo equation that

would mean including the equation for the wave speed ṡ = 0 and re-labeling s

to a suitable indexed y-coordinate. Let S 0 denote some compact normally hy-

perbolic submanifold of the critical manifold and let S ǫ be the corresponding

slow manifold. Note that we shall assume that S 0 is in fact uniformly normally

hyperbolic meaning that Dx f (p) has eigenvalues uniformly bounded away from

zero for each p ∈ S 0.

Recall from Theorem 1.1.3 that we can transform a fast-slow system near a
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a = 0

b = 0

a

b

y

S 0

Figure 2.5: A fast-slow system near a normally hyperbolic critical mani-
fold S 0 in Fenichel Normal Form. In this picture we have sup-
pressed all coordinates yi with i > 1.

normally hyperbolic critical manifold S 0 into Fenichel normal form:

a′ = Λ(a, b, y, ǫ)a

b′ = Γ(a, b, y, ǫ)b (2.18)

y′ = ǫ(h(y, ǫ) + H(a, b, y, ǫ)(a, b))

with a ∈ R
k, b ∈ R

l, y ∈ R
n and k + l = m; Λ and Γ are matrix-valued functions

and H is a bilinear-form valued function which can be written explicitly as

y′i = ǫ















hi(y, ǫ) +
k

∑

u=1

l
∑

s=1

Hiusaubs















Sometimes also the tensor notation H(a, b, y, ǫ) ⊗ a ⊗ b = H(a, b, y, ǫ)(a, b) is em-

ployed. The matrix-valued functions Λ and Γ are defined by separating the fast

unstable and fast stable directions. More precisely, in (2.18) the critical manifold

S 0 is {a = 0, b = 0} and normal hyperbolicity implies there are λ0, γ0 such that

any eigenvalue λi of Λ(0,0, y,0) or any eigenvalue γi of Γ(0,0, y,0) satisfies

Re λi > λ0 > 0, Re γi < γ0 < 0

in a region

B = {(a, b, y) : |a| < δ, |b| < δ, y in a given compact region}
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with δ > 0 sufficiently small. The same holds for ǫ > 0 sufficiently small so that

(2.18) is still valid and we can find λǫ > 0 and γǫ < 0 which are the weak unstable

and weak stable eigenvalues near S ǫ . In equations (2.18) we can rectify the slow

flow. Without loss of generality we assume that the slow flow is pointing in

the direction y1 so that we can reduce the problem of analyzing the flow near a

normally hyperbolic slow manifold S ǫ to:

a′ = Λ(a, b, y, ǫ)a

b′ = Γ(a, b, y, ǫ)b (2.19)

y′ = ǫ(U + H(a, b, y, ǫ)(a, b))

where U = (1,0, . . . ,0)T . Observe that the stable and unstable manifolds W s

and Wu of S ǫ are given by {a = 0} and {b = 0} respectively. Let M be a (k + 1)-

dimensional invariant manifold. M is the manifold we want to follow in phase

space. We remark that the dimensional requirement on M can be generalized

but for simplicity we shall only consider the case of (k+1) dimensions. Suppose

M intersects the boundary of the region/box B in {b = δ} at some point q. If q is

close enough to the stable manifold W s(S ǫ) = {a = 0} then a trajectory starting at

q stays near S ǫ for a long time (e.g. a time that is O(1/ǫ) on the fast time scale t).

We want to find estimates on the fast coordinates (a, b) to quantify the situation

more precisely.

Lemma 2.3.1. There exists constants ca, cb,K > 0 such that for s ≤ t the following

three results hold

(R1) |b(t)| ≤ cb|b(s)|eγ0(t−s)

(R2) |a(t)| ≥ ca|a(s)|eλ0(t−s)

(R3) |
∫ s

t
a(σ)dσ| ≤ K (independent of ǫ, t, s)
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as long as a trajectory remains in B.

Proof. We start by proving (R1). Since the eigenvalues of Λ(a, b, y, ǫ) are close

to the ones of Λ(0,0, y, ǫ) we see that near each point z = (a, b, y) ∈ B there is a

neighborhood N of z such that an estimate of the form

|b(t)| ≤ CN |b(s)|eγ0(t−s)

holds if b(σ) ∈ N with σ ∈ (s, t) and ǫ sufficiently small. By compactness of B

we can cover B by a finite number of such neighborhoods. In fact, if we con-

sider all trajectories segments lying in B we can cover each segment by an open

cover. Taking the union of those open covers will cover B and then we extract

a finite subcover by compactness. Therefore we get an estimate for an arbitrary

trajectory given by

|b(t)| ≤ CN1CN2 · · ·CNm |b(s)|eγ0(t−s)

for some finite fixed m ∈ N. Now (R1) follows and (R2) is immediate by using

the same method of proof as for (R1). This leaves the estimate (R3). Using (R2)

we find

|a(σ)| ≤ 1
ca
|a(t)|eγ0(σ−t) for σ ≤ t

Integrating both sides of the last equation yields:

∫ t

s
|a(σ)|dσ ≤ 1

ca
|a(t)|

∫ t

s
eλ0(σ−t)dσ ≤ |a(t)|

caλ0
(1− eλ0(s−t))

Since |a(t)| ≤ δ and λ0 > 0 we can conclude (R3) holds. �

Now we can track trajectories inside B. Since the manifold M is invariant a

trajectory starting at q ∈ M ∩ {|b| = δ} has to stay inside M for all time. Hence we

can follow a neighborhood of q in M under the flow as shown by the next result.
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Theorem 2.3.2. Let q̄ ∈ M ∩ {|a| = δ} be the exit point of a trajectory starting at

q ∈ M ∩ {|b| = δ} that spends a time t that is O(1/ǫ) in B. Let V be a neighborhood of q

in M. If V is sufficiently small then the image of V under the time t map is close to

{|a| = δ, yi − yi(0) = 0, i > 1}

in the C0-norm where yi(0) denotes the y-coordinates of q.

The situation is illustrated in Figure 2.6.

a = 0

b = 0

a

b

y

S ǫ

V

φt(V)

q

q̄

Figure 2.6: In this picture we have suppressed all coordinates yi with
i > 1. The image of the neighborhood V near the exit point
q̄ is denoted by φt(V); it is very close to the unstable manifold
Wu(S ǫ) = {|b| = 0} near the exit point.

Proof. From Lemma 2.3.1, (R1) we find that b(t) is small. Hence we are left with

the yi coordinates with i > 1. Since b(t) is small we clearly have for i > 1:

y′i ≤ ǫ














k
∑

u=1

Hiuau















:= ǫH̄i · a

where H̄i is a k-vector of functions. As H̄i is smooth and B is compact we can let

di be a bound for |H̄i|. Therefore

∫ t

0
yidσ ≤ ǫ

∫ t

0
H̄i · adσ
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implies using the Fundamental Theorem of Calculus that

|yi(t) − yi(0)| ≤ ǫ
∫ t

0
di|a(σ)|dσ (2.20)

Using Lemma 2.3.1, (R3) we can conclude that the right-hand side of (2.20) is

O(ǫ). �

Often Theorem 2.3.2 is called a C0-Exchange Lemma and we might ask why

there is any need to consider a refined version of it as we just tracked the mani-

fold M near the slow manifold S ǫ . The problem is that every trajectory exits near

q̄ almost tangent to the unstable manifold Wu(S ǫ). Hence we have no informa-

tion about the part of the tangent spaces of M in the center directions. In this case

we cannot rely on any results about transversality obtained in the singular limit

ǫ = 0 for an intersection of Wu(S 0) with some other manifold, say N, to conclude

that M is transversal to N for ǫ > 0. We have information about the location

of the manifold M itself (“C0-information”) but not sufficient knowledge about

its tangent spaces (“C1-information”). As the tangent spaces determine whether

an intersection is transversal the C0-Exchange Lemma is insufficient. Note care-

fully that the situation just described occurs for the FitzHugh-Nagumo equation

(2.15) if we try to follow the unstable manifold of the unique equilibrium point

during its second jump; see Figure 2.7.

2.4 The Exchange Lemma II

The C1-closeness result we want is the following (cf. Figure 2.6):

Theorem 2.4.1 (Exchange Lemma). Let M be a (k + 1)-dimensional invariant mani-

fold. Assume M ∩ {|b| = δ} intersects {a = 0} transversely. Let q̄ ∈ M ∩ {|a| = δ} be the
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exit point of a trajectory starting at q ∈ M ∩ {|b| = δ} that spends a time t = O(1/ǫ) in

B. Let V be a neighborhood of q in M. The image of V under the time t map is close in

the C1-norm to

{|a| = δ, yi − yi(0) = 0, i > 1}

where yi(0) denotes the y-coordinates of q. In particular M is C1-close to {|a| = δ, yi −

yi(0) = 0, i > 1} near q̄.

Remark: The key feature of both Exchange Lemmas (Theorems 2.3.2 and

2.4.1) is that we have traded information about transversality and variation of

certain center directions (here: yi with yi > 1) near q with new information near

the exit point q̄ given by a C1-closeness result to a certain submanifold of the

unstable manifold Wu(S ǫ). The idea used by Jones and Kopell [68] to achieve a

tracking of the tangent spaces to M is to consider (k + 1)-differential forms that

are dual to (k + 1) planes in k + l + n space and describe their evolution by a dif-

ferential equation. As usual we shall simply write (k+1)-forms with the implicit

assumption that all forms are sufficiently differentiable. A basic (k + 1)-form is

given by

Pσ1···σk+1 := dσ1 ∧ . . . ∧ dσk+1

where σ j ∈ {ai, bi, yi}. Furthermore we know that a basis of all forms is given by

restricting to increasing indices. Here we agree on the ordering

a1 < a2 < · · · < ak < b1 < · · · < bl < y1 < · · · < yn

It will be convenient to use a projectivized versions of the Pσ1...σk+1:

P̂σ1···σk+1 =
Pσ1···σk+1

Pa1···aky1

A priori we cannot say that P̂ will always be well defined everywhere as Pa1···aky1

might be zero. But we shall see that near S ǫ we always have Pa1···aky1 , 0, i.e.
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the components of tangent planes of M at points of trajectories in B will always

have non-vanishing components in the ai and the y1 directions. In fact, the hy-

perplane H spanned by the ai and the y1 coordinates can be defined by requiring

that

Pσ1···σk+1(v) = 0 for all v ∈ H and (σ1, . . . , σk+1) , (a1, . . . , ak, y1)

Therefore we can easily restate the Exchange Lemma in an equivalent form us-

ing differential forms.

Theorem 2.4.2 (Exchange Lemma - differential form conclusion). Under the same

assumptions as in Theorem 2.4.1 we conclude that at q̄:

P̂σ1···σk+1 = O(ǫ)

for all (σ1, . . . , σk+1) , (a1, . . . , ak, y1).

In the next section we give a proof of the Exchange Lemma for the simplest

non-trivial case in phase space dimension four for a system with two fast and

two slow variables.

2.5 A Proof in R
4

Here we prove Theorem 2.4.2 for a (2,2)-fast-slow system in Fenichel Normal

Form near the slow manifold S ǫ with z := (a, b, y1, y2) and a, b, y1, y2 ∈ R

a′ = Λ(z, ǫ)a

b′ = Γ(z, ǫ)b (2.21)

y′1 = ǫg1(z, ǫ) = ǫ(1+ H1(a, b, y, ǫ)ab)

y′2 = ǫg2(z, ǫ) = ǫ(H2(a, b, y, ǫ)ab)
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Hence we have k = 1 = l and n = 2 in view of the notation in the previous two

sections. Also we still work in a suitable neighbourhood/box

B = {(a, b, y) : |a| < δ, |b| < δ, y in a given compact region} (2.22)

We divide the proof into several steps:

• Step 1: We want to track tangent planes to a two-dimensional invariant

manifold. To measure how these planes evolve under the flow we are

going to develop evolution equations for differential 2-forms that are dual

to planes in R
4.

• Step 2: We are going to show that the evolution equations derived in Step 1

are of a special form due to the structure of Fenichel Normal Form. In this

process we are going to split the coordinates of 2-forms into two groups.

One is formed by Pay1, Pay2 and the other by the four other basic 2-forms

spanning
∧2

R
4. Both groups are going to satisfy fundamental estimates

under the flow.

• Step 3: The assumptions of the Exchange Lemma on transversality at the

entry point to B and spending a time of order O(1/ǫ) in B will be used.

They provide estimates on the initial conditions at the entry point q.

• Step 4: In B we are going to follow the reference solution that starts at the

entry point q, tracks the slow manifold and then exits near q̄. The first key

component is to show that the form Pay1 never vanishes inside B. This

allows us to consider forms projectivized/divided by Pay1. The general

strategy is to follow the reference solution through a compact neighbour-

hood inside B, show that inside this neighbourhood all estimates we want
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from the evolution equations hold and then extend this procedure by com-

pactness of B.

• Step 5: This step provides the basic estimates to control the evolution of

all 2-forms inside B. The estimates appear to be rather involved but the

essential tool is just Gronwall’s Lemma.

• Step 6: This step collects all the previous results and derives from estimates

at q the final estimates at q̄. This final part of the proof is subdivided into

three parts. The first tracks M from q to S ǫ , the second follows M near S ǫ

and the third deals with the exit from S ǫ towards q̄. The overall patching

strategy is the same as in Step 4.

Step 1: We start with a remark on 2-forms in R
4. Let σi for i = 1,2,3,4 be

coordinates in R
4. Observe that if P is a 2-plane then the natural first attempt

to define how to evaluate a 2-form on P is to take two independent vectors

that span P and then evaluate the 2-form on those vectors; this process is only

defined up to a multiple as we can scale basis vectors inside P. To avoid this

ambiguity consider a unit rectangle R of P and evaluate the form on the vectors

spanning it. We can interpret this process geometrically in the usual way; for

example, consider (dσ1 ∧ dσ2)(P) which can be evaluated projecting R onto the

(σ1, σ2)-plane along the coordinate axes σ3 and σ4 and then taking the area of

this projection. Hence we have defined the evaluation of 2-forms on planes up

to orientation; the orientation will not matter for us in the following as we will

only consider absolute values when evaluating 2-forms on planes. Furthermore

observe that e.g. the (σ1, σ2)-plane is characterized by vanishing of all basic 2-

forms execept dσ1 ∧ dσ2 and dσ2 ∧ dσ1.
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The variational equations describing a flow of the differential forms

da, db, dy1 and dy2 associated to (2.21) are:

da′ = Λ(z, ǫ)da + a(∇Λ · dz)

db′ = Γ(z, ǫ)db + b(∇Γ · dz)

dy′1 = ǫ∇g1(z, ǫ) · dz

dy′2 = ǫ∇g2(z, ǫ) · dz

where dz = (da, db, dy1, dy2)T and ∇ denotes the usual gradient operator so e.g.

∇Λ =
(

∂Λ

∂a
,
∂Λ

∂b
,
∂Λ

∂y1
,
∂Λ

∂y2

)T

To calculate the evolution equations for the two-forms Pσ1σ2 we use the product

rule, e.g.

P′ay1
= (da ∧ dy1)

′
= da′ ∧ dy1 + da ∧ dy′1

= (Λ(z, ǫ)da + a∇Λ · dz) ∧ dy1 + ǫda ∧ (∇g1 · dz)

=: Λ(z, ǫ)Pay1 + aR1 + ǫR2

where · denotes the usual dot product between vectors in R
4. We shall drop

the argument (z, ǫ) for simplicity from now on. The calculations for the other

2-forms are similar and we get the desired evolution equations:

P′ay1
= ΛPay1 + aR1 + ǫR2

P′ay2
= ΛPay2 + aR3 + ǫR4

P′ab = (Λ + Γ)Pab + aR5 + bR6

P′by1
= ΓPby1 + bR7 + ǫR8 (2.23)

P′by2
= ΓPby2 + bR9 + ǫR10

P′y1y2
= ǫ(R11+ R12)
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where

R1 = (∇Λ · dz) ∧ dy1 R7 = (∇Γ · dz) ∧ dy1

R2 = da ∧ (∇g1 · dz) R8 = db ∧ (∇g1 · dz)

R3 = (∇Λ · dz) ∧ dy2 R9 = (∇Γ · dz) ∧ dy2

R4 = da ∧ (∇g2 · dz) R10 = db ∧ (∇g2 · dz)

R5 = (∇Λ · dz) ∧ db R11 = dy1 ∧ (∇g1 · dz)

R6 = da ∧ (∇Γ · dz) R12 = (∇g2 · dz) ∧ dy2

Note that we only considered the six 2-forms Pay1, Pay2, Pab, Pby1, Pby2, Py1y2 as they

span the space of two-forms
∧2

R
4. To simplify notation we let

Z := (Pay1, Pay2)
T
= (Z1,Z2)

X := (Pab, Pby1, Pby2, Py1y2)
T
= (X1, X2, X3, X4)

T .

Step 2: The next lemma provides fundamental estimates which we shall use

throughout this section.

Lemma 2.5.1. The equations for (Z, X) can be written in the form:

Z′ = ΛZ + η1(Z, X, t)

X′ = BX + η2(Z, X, t) (2.24)

where B = B(z, ǫ) is a 4× 4 matrix-valued function. The following conditions hold:

(i) For a = 0, b = 0, ǫ = 0 we have η1 = 0, η2 = 0.

(ii) The matrix B satisfies:

∥

∥

∥

∥

∥

∥

exp

(∫ t

s
(B − Λ(Id))dξ

)
∥

∥

∥

∥

∥

∥

≤ M̄ exp(−µ(t − s)) (2.25)

for some M̄ ≥ 1, µ > 0 and t > s.
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(iii) Denote by η1i the i-th row of η1. Then

η1i = Fi(Zi, X, t) +Gi(Z, X, t)

where the following estimates are satisfied

|Fi(Zi, X, t)| ≤ C̃|a|(|Zi| + ‖X‖)

|Gi(Z, X, t)| ≤ ǫK̃|a|(‖Z‖ + ‖X‖)

for some fixed constants C̃, K̃ < ∞.

(iv) Furthermore we find

η2 = E(X, t) + H(Z, X, t)

where the following estimates are satisfied

‖E(X, t)‖ ≤ Ĉ|a|‖X‖

‖H(Z, X, t)‖ ≤ K̂(ǫ + |b|)(‖Z‖ + ‖X‖)

for some fixed constants Ĉ, K̂ < ∞.

Proof. From the evolution equations (2.23) we find that

Z′ = ΛZ +























aR1 + ǫR2

aR3 + ǫR4























(2.26)

= ΛZ +























a(ΛaZ1 + ΛbX2 − Λy2X4) + ǫ(g1bX1 + g1y1Z1 + g1y2Z2)

a(ΛaZ2 + ΛbX3 + Λy1X4) + ǫ(g2bX1 + g2y1Z1 + g2y2Z2)























where letter subscripts denote the partial derivative with respect to the indi-

cated variable; note that the antisymmetry property of differential forms has

been used extensively in the calculation (2.26). From (2.26) we see that Z′ = ΛZ

42



when a = 0 and ǫ = 0. We also have

X′ =



























































Λ + Γ 0 0 0

0 Γ 0 0

0 0 Γ 0

0 0 0 0





















































































































X1

X2

X3

X4



























































+



























































aR5 + bR6

bR7 + ǫR8

bR9 + ǫR10

ǫR11+ ǫR12



























































(2.27)

= BX +



























































a(ΛaX1 − Λy1X2 − Λy2X3) + b(ΓbX1 + Γy1Z1 + Γy2Z2)

b(ΓaZ1 + ΓbX2 − Γy2X4) + ǫ(−g1aX1 + g1y1X2 + g1y2X3)

b(ΛaZ2 + ΛbX3 + Λy1X4) + ǫ(−g2aX1 + g2y1X2 + g2y2X3)

ǫ(−g1aZ1 − g1bX2 + g1y2X4 + g1aZ2 + g2bX3 + g2y1X4)



























































Hence for a = 0, b = 0 and ǫ = 0 we must have η2 = 0 which completes the proof

of (i). For (ii) note that

B − Λ(Id) =



























































Γ 0 0 0

0 Γ − Λ 0 0

0 0 Γ − Λ 0

0 0 0 −Λ



























































(2.28)

Recall that Λ ≥ Λ0 > 0 and Γ ≤ Γ0 < 0 for (z, ǫ) in a suitable compact subset,

which we called B, near the critical manifold by Fenichel Normal Form Theory.

Therefore the matrix in (2.28) has eigenvalues bounded above by some negative

fixed number, say −µ with µ > 0; using this observation (ii) follows. We can

group the terms on the right-hand side in (2.26) as follows:

F1(Z1, X, t) := a(ΛaZ1 + ΛbX2 − Λy2X4)

G1(Z, X, t) := ǫ(g1bX1 + g1y1Z1 + g1y2Z2)

F2(Z2, X, t) := a(ΛaZ2 + ΛbX3 + Λy1X4)

G2(Z, X, t) := ǫ(g2bX1 + g2y1Z1 + g2y2Z2)

Using the triangle inequality we arrive at the estimates required in (iii). Now

set E(X, t) equal to all the terms of X′ − BX that do not vanish at b = 0 and ǫ = 0.
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Then let H(Z, X, t) := X′ − BX − E(X, t) and use the triangle inequality again. This

shows (iv) and completes the proof. �

Step 3: We want to incorporate the assumptions of the Exchange Lemma

into estimates on the initial conditions of Zi and Xi at q. We assumed that the

trajectory spends at least O(1/ǫ) in a box B and we also have a transversality

condition at the entry point q. This will constrain the values of (Z, X) on TqM.

Let X̂i := Xi/Z1 and Ẑ2 = Z2/Z1 as suggested in the differential form version of the

Exchange Lemma in Theorem 2.4.2.

Lemma 2.5.2. There exists K̄ > 0 such that at TqM we have |Z1| > K̄ǫ, |X̂i| < 1/(K̄ǫ)

and |Ẑ2| is exponentially small.

Proof. Recall that we defined evaluating forms on TqM as evaluating them on a

projected unit hypercube. Therefore we must have |Xi(TqM)| ≤ 1. Since TqM is

transverse with respect to {|a| = 0}we find that there is a K̄ such that |Z1(TqM)| >

K̄ǫ. Therefore

|X̂i(TqM)| =
|Xi(TqM)|
|Z1(TqM)|

< 1/(K̄ǫ).

It remains to show that |Ẑ2| is exponentially small and so we must try to estimate

|Z2|. Here we view TqM as spanned by two vectors, one defined by the vector

field (2.21), denoted by v, and a vector orthogonal to it in TqM, say v⊥. Up to a

scalar multiple we find that

|Z2(TqM)| = const ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

det























v1 v4

v⊥1 v⊥4























∣

∣

∣

∣

∣

∣

∣

∣

∣

= const · |v1v⊥4 − v4v⊥1 | (2.29)

since evaluating the differential form da ∧ dy2 = Z2 on two vectors amounts to

picking out the a and y2 components and then applying the determinant. By

the definition of v we look at equation (2.21) and see that |v1| is O(|a|). Since |v⊥4 |
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is bounded by a constant we have an O(|a|) estimate on the first term of (2.29).

Next, we recall that the equation for y′2 in the Fenichel Normal form is

y′2 = ǫg2(z, ǫ) = ǫ(H2(a, b, y, ǫ)ab)

This means that v4 also contains a multiplicative factor of O(|a|) when we esti-

mate it. If we could show that |a| is exponentially small at q then the result will

follow easily. Indeed, Lemma 2.3.1 says that the a-coordinate will expand at

least by a positive rate Λ0 > 0 inside B. Now we use the hypothesis that the

trajectory through q stays an O(1/ǫ) time in B and therefore |a| must have been

exponentially small at q

|a| < k1e−k2/ǫ for some constants ki > 0.

Hence |Z2| is exponentially small which immediately yields that |Ẑ2| is exponen-

tially small. �

Step 4: Our next goal is to estimate the size of Ẑi and X̂i evaluated on the

tangent space to M which evolves under the flow. Our reference solution is the

trajectory starting at q and ending up at q̄. We know from Lemma 2.5.2 that

|Z1| > K̄ǫ which means that in a neighbourhood of q the projectivized forms are

well-defined (i.e. the denominator is nonzero). The next lemma provides this

well-definedness inside B.

Lemma 2.5.3. There is a constant C > 0 such that

|Z1|′ ≥ (Λ −C|a|(1+ ‖X̂‖ + ǫ‖Ẑ‖))|Z1| (2.30)
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Proof. First, we work near q, then |Z1| , 0 and so we calculate:

|Z1|′ =
d
dt

√

Z2
1 =

2Z′1Z1

2
√

Z2
1

=
ΛZ2

1

|Z1|
+
η11Z1

|Z1|
= Λ|Z1| +

η11Z1

|Z1|

Using Lemma 2.5.1 we then find that

|Z1|′ ≥ Λ|Z1| − (|F1| + |G1|)

≥ (Λ − C̃|a|)|Z1| − C̃|a|‖X‖ − ǫK̃|a|(‖Z‖ + ‖X‖)

Now choose C such that C > C̃ + ǫK̃ and C > K̃ and we obtain (2.30) near q. By

making the box B sufficiently small we can make |a| small enough so that, since

Λ ≥ Λ0 > 0, we always have

(Λ −C|a|(1+ ‖X̂‖ + ǫ‖Ẑ‖)) > 0

Hence we find near q that |Z1|′ > 0 and so |Z1| is increasing; if we now leave a

neighbourhood of q then we still have |Z1| > K̄ǫ. Repeating the argument above

in a compact set away from q and covering B by finitely many compact sets

yields |Z1| , 0 inside B and the estimate (2.30). �

Step 5: The next lemma is fundamental to control Ẑi inside B.

Lemma 2.5.4. There are constants C,K > 0, where C is as in Lemma 2.5.3, so that the

following inequalities hold

|Ẑi|′ ≤ (α(t) + 2C|a|)|Ẑi| + α(t) (2.31)

‖X̂i‖ ≤ M̄

[

‖X̂0‖e
∫ t
0 β1(s)ds

+

∫ t

0
e
∫ t

s β1(r)drβ2(s)ds

]

(2.32)
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where α, β1 and β2 are:

α(t) = C|a|(‖X̂‖ + ǫ(1+ ‖Ẑ‖))

β1(t) = −µ +C(δ + |a|‖X̂‖)

β2(t) = K[(ǫ + |b| + ǫ |a|‖X̂‖)‖Ẑ‖ + ǫ + |b|]

The constant µ > 0 carries over from Lemma 2.5.1 and δ > 0 defines the neighbourhood

size of B as given in (2.22).

Proof. We start by proving (2.31). A direct calculation as in the previous lemma

gives

|Ẑi|′ = −
η11Ẑ2

i

Z1|Ẑi|
+
η1iẐi

Z1|Ẑi|
(2.33)

The chain and quotient rules used for calculating (2.33) are only valid for |Zi| , 0,

when Zi = 0 we only obtain left and right limits for the derivative of opposite

sign. If we estimate the right-hand side of (2.33) then

|Ẑi|′ ≤
∣

∣

∣

∣

∣

η11

Z1

∣

∣

∣

∣

∣

|Ẑi| +
∣

∣

∣

∣

∣

η1i

Z1

∣

∣

∣

∣

∣

which is independent of such left and right limits. Using Lemma 2.5.1 again we

find
∣

∣

∣

∣

∣

η11

Z1

∣

∣

∣

∣

∣

≤ C̃|a|(1+ ‖X̂‖) + ǫK̃|a|(1+ ‖Ẑ‖ + ‖X̂‖)
∣

∣

∣

∣

∣

η1i

Z1

∣

∣

∣

∣

∣

≤ C̃|a|(|Ẑi| + ‖X̂‖) + ǫK̃|a|(1+ ‖Ẑ‖ + ‖X̂‖)

The desired estimate (2.31) now follows if we choose C again such that C >

C̃ + ǫK̃ and C > K̃. This completes the first part of the proof. For the second part

we again use calculus first:

X̂′i =
d
dt

(

Xi

Z1

)

=
Z1X′i − XiZ′1

Z2
1

=
Z1(BiiXi + η2i) − Xi(ΛZ1 + η11)

Z2
1

= (Bii − Λ)X̂i +

[

η2i

Z1
− η11

Z1
X̂i

]
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This result can be written more compactly in vector form as:

X̂′ = (B − Λ)X̂ +

[

η2

Z1
− η11

Z1
X̂

]

From Lemma 2.5.1 we get that

∥

∥

∥

∥

∥

η2

Z1

∥

∥

∥

∥

∥

≤ Ĉ|a|‖X̂‖ + K̂(ǫ + |b|)(1+ ‖Ẑ‖ + ‖X̂‖)

Since we have already found an estimate on |η11/Z1| above it now follows that

∣

∣

∣

∣

∣

η2

Z1
− η11

Z1
X̂
∣

∣

∣

∣

∣

≤ β3(t)‖X̂‖ + β2(t) (2.34)

where

β3(t) = C∗|a|(1+ ‖X̂‖) + K(ǫ + |b|)

and the constants are chosen so that C∗ > C̃ + ǫK̃ + C̃ and K > max(K̃, K̂). Basi-

cally the estimate (2.34) controls the nonlinear term for the equations of X̂. We

proceed by considering an integrating factor:

J(t) := exp

(

−
∫ t

0
(B − ΛId)ds

)

The standard integrating factor calculation then reads

X̂′J − (B − Λ)X̂J = J

[

η2

Z1
− η11

Z1
X̂

]

⇒ (X̂J)′ = J

[

η2

Z1
− η11

Z1
X̂

]

⇒
∫ t

0
(X̂J)′ds =

∫ t

0
J

[

η2

Z1
− η11

Z1
X̂

]

ds

⇒ X̂ = J(t)−1X̂0 + J(t)−1

∫ t

0
J

[

η2

Z1
− η11

Z1
X̂

]

ds

The inverse of the matrix J(t) is

J(t)−1
= exp

(∫ t

0
(B − ΛId)ds

)
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Recall from Lemma 2.5.1 that we have the estimate

exp

(∫ t

s
(B − ΛId)dr

)

≤ M̄e−µ(t−s)

Therefore we can now estimate ‖X̂‖ as follows:

‖X̂‖ ≤ ‖J(t)−1X̂0‖ +
∫ t

0
‖J(t)−1J(s)‖

∥

∥

∥

∥

∥

η2

Z1
− η11

Z1
X̂
∥

∥

∥

∥

∥

ds

≤ M̄

[

e−µt‖X̂0‖ +
∫ t

0
e−µ(t−s)(β3(s)‖X̂‖ + β2(s))ds

]

(2.35)

The last equation is in a form to apply a generalized Gronwall inequality which

states that if u, v, c ≥ 0, c is differentiable and v(t) ≤ c(t) +
∫ t

0
u(s)v(s)ds then

v(t) ≤ c(0) exp
∫ t

0
u(s)ds +

∫ t

0
c′(s)

[

exp
∫ t

s
u(r)dr

]

ds

For a proof see [20]. If we multiply (2.35) by eµt and apply the generalized Gron-

wall inequality we obtain:

eµt‖X̂‖ ≤ M̄

[

‖X̂0‖e
∫ t
0 β3(s)ds

+

∫ t

0
eµsβ2(s)e

∫ t
s β3(r)drds

]

We know from the size of the neighbourhood/box B that |a| < δ and |b| < δ and

so

−µ + β3 ≤ −µ +C(δ + |a|‖X̂‖) = β1

where C is chosen so that C > C∗ + 2Kδ and ǫ is sufficiently small, in particular

less than δ. Since we have that

e−µ(t−s)
= exp

∫ t

s
(−µ)dr

the final result (2.32) follows. �

Step 6: Having all the estimates in place we can proceed to the proof of the

Exchange Lemma.
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Proof. (of Theorem 2.4.2) The argument consists of three parts which are quite

typical for many multiple time scale proofs:

1. Follow the trajectory from q for an O(1/ǫ) time until |b| is exponentially

small; this describes the approach towards the slow manifold

S ǫ = {a = 0, b = 0}.

2. Follow the trajectory while |a| and |b| stay exponentially small near S ǫ .

3. Consider the region where |a| grows to δ > 0; this captures the departure

from S ǫ .

Let T = O(1/ǫ) denote the time the trajectory from q to q̄ takes to pass through

B. We can assume without loss of generality that q corresponds to t = 0.

Part 1: Let T1 ∈ (0,T ) be a time of order O(1/ǫ) such that |a| is exponentially

small for t < T1. Then at t = T1 we have that ‖Ẑ‖ is exponentially small and

‖X̂‖ = O(ǫ + δ).

Proof of Part 1: Clearly there is such a time T1 by Lemma 2.3.1 since if T1

would not exist then the trajectory would already leave B before T . We will

assume that ‖Ẑ‖ ≤ 1 and ‖X̂‖ ≤ 1/(K̄ǫ) for t ∈ (0,T1); this will be justified at the

end of the proof for Step 1. Recall from Lemma 2.5.2 that ‖X̂(0)‖ ≤ 1/(K̄ǫ). Note

that we have

β1(t) ≤ −µ/2 (2.36)

β2(t) ≤ 2K(ǫ + δ) (2.37)
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since |a| is exponentially small, |b| ≤ δ and ‖Ẑ‖ ≤ 1 (see Lemma 2.5.4). Then we

can use (2.32) and get

‖X̂i‖ ≤ M̄

[

‖X̂0‖e
∫ t
0 β1(s)ds

+

∫ t

0
e
∫ t

s β1(r)drβ2(s)ds

]

≤ M̄

[

1

K̄ǫ
e−

µ
2 t
+

∫ t

0
e−

µ
2 (t−s)2K(ǫ + δ)ds

]

≤ M̄

[

1

K̄ǫ
e−

µ
2 t
+

4K
µ

(ǫ + δ)

]

(2.38)

Looking at (2.38) we see that the first term is exponentially small for T1 = O(1/ǫ)

and so we have ‖X̂‖ ≤ O(ǫ + δ). Since |a| is exponentially small we also have

α(t) + 2C|a| ≤ K2e−c2/ǫ =: κ (2.39)

for some K2, c2 > 0. Using (2.31) and the usual Gronwall Lemma we compute

|Ẑi(t)| ≤ |Ẑi|eκt +
∫ t

0
eκ(t−s)κds

= |Ẑi(0)|eκt + eκt − 1 (2.40)

But since κ is exponentially small and t ≤ O(1/ǫ) we see that κt must be expo-

nentially small. But eκt − 1 ≈ κt which means that the second term of (2.40)

is exponentially small. In Lemma 2.5.2 we showed that |Ẑi(0)| is exponenen-

tially small and this implies that |Ẑi| is exponentially small. This establishes the

two estimates we want for Step 1 as long as we can show that ‖Ẑ‖ ≤ 1 and

‖X̂‖ ≤ 1/(K̄ǫ). Indeed, we know that |Ẑi(0)| is exponenentially small and so there

is a time 0 < t∗ ≤ T1 such that ‖Ẑ‖ ≤ 1 for t ∈ [0, t∗]. Up to this time the estimates

derived so far hold which means that at t = t∗ we have ‖Ẑ‖ exponentially small;

now we can just cover [0,T1] by a finite number of time intervals. Applying a

similar argument to the assumed estimate for ‖X̂‖we get the result.

Part 2: Let T2 < T2 < T be any time T2 = O(1/ǫ) such that T − T2 = O(1/ǫ) and

for t ∈ [T1,T2] we have |a| and |b| exponentially. Then at t = T2, ‖X̂‖ = O(ǫ) and
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‖Ẑ‖ is still exponentially small.

Proof of Part 2: We can repeat the argument of Step 1 and notice that we can

improve on the estimate of β2 since |b| is now exponentially small to get

β2 ≤ 2Kǫ

Then looking at (2.38) we find that

‖X̂‖ ≤ 4M̄Kǫ/µ + exp. small terms (2.41)

With respect to ‖Ẑ‖ the estimate (2.40) is still valid which completes the proof of

Step 2.

Note that our strategy so far was to assume some crude priori bounds on

‖Ẑ‖ and ‖X̂‖. Then in Steps 1 and 2 it was shown that the a priori bounds can

be refined on a compact time interval. Hence we were able to cover the desired

time intervals [0,T1] and [T1,T2] by a finite number of subintervals; at the left

endpoints of the subintervals the a priori ones held. The third step is proven by

precisely the same strategy.

Part 3: In [T2,T ], we have that |b| is exponentially small and |a| = O(δ). Then

it follows that at t = T , ‖X̂‖ = O(ǫ) and ‖Ẑ‖ = O(ǫ).

Proof of Part 3: We consider the a priori bounds ‖Ẑ‖ ≤ 1 and ‖X̂‖ ≤ K3ǫ for

some K3 > 0 which are satisfied at T2. Observe that for ‖X̂‖ = O(ǫ) we find that

|a|‖X̂‖ = O(ǫ) since |a| ≤ δ. This implies that for ǫ and δ sufficiently small we still
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have the estimates (2.36) and (2.41). Using (2.32) as in Step 1 we get:

‖X̂‖ ≤ M̄

[

e−( µ2 )(t−T2)‖X̂(T2)‖ +
4Kǫ
µ
+ exp. small terms

]

(2.42)

Therefore it follows that ‖X̂‖ = O(ǫ). For ‖Ẑ‖ we observe that the left-hand side

of (2.39) non longer satisfies an exponential estimate since α(t) + 2C|a| = O(δ).

We have to look at α(t) again which is given by:

α(t) = C|a|(‖X̂‖ + ǫ(1+ ‖Ẑ‖))

≤ C|a|(K3ǫ + ǫ(1+ 1)) = 3C|a|ǫ(K3 + 2)

Applying Gronwall’s Lemma again to (2.31) we find

|Ẑi(t)| ≤ |Ẑi(T2)|e
3C

∫ t
T2
|a|ds
+ ǫ

∫ t

T2

e3C
∫ t

s |a|drC(K3 + 2)|a|ds (2.43)

From Lemma (2.3.1) we know that
∫ t

T2
|a|ds and

∫ t

s
|a|ds stay finite. Therefore

the first term on the right-hand side of (2.43) is exponentially small and the

second term is O(ǫ). This is precisely what is required for the differential form

conclusion of the Exchange Lemma i.e. ‖X̂‖ = O(ǫ) and ‖Ẑ‖ = O(ǫ) near the exit

point q̄. �

Remark: The proof presented here only applies to R
4 but contains all nec-

essary steps for more general cases. In particular, observe that the low-

dimensionality significantly simplifies Lemma 2.5.1 which calculates the equa-

tions of motion for the differential forms. Once this Lemma is proved in higher-

dimensional cases the rest of the proof carries over almost verbatim.

2.6 Fast Waves in FitzHugh-Nagumo Equation

Having the Exchange Lemma available we can proceed with the idea developed

in Section 2.2. Recall that the goal is to prove the existence of a homoclinic orbit
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in the FitzHugh-Nagumo equation

ǫ ẋ1 = x2

ǫ ẋ2 =
1
δ

(sx2 − x1(1− x1)(x1 − a) + y) (2.44)

ẏ =
1
s
(x1 − γy)

In contrast to the ideas developed in Section 2.1 we want to construct the ho-

moclinic orbit as a perturbation of a singular solution consisting of two fast and

two slow segments. The situation is shown in Figure 2.7.

C0

(0,0,0)

slow
slow

fast

fast

Figure 2.7: Sketch of the singular homoclinic orbit in the FitzHugh-
Nagumo equation (2.44). It consists of two fast segments (red)
and two slow segments (green).

Consider the FitzHugh-Nagumo equation in the singular limit ǫ = 0. As dis-

cussed previously we know that there exists a wave speed s∗ such that the fast

subsystem defined by y = 0 at the height of the equilibrium has a heteroclinic

connection between its two saddle equilibria (x1, x2) = (0,0) and (x1, x2) = (1,0).

Then we follow the slow flow on the critical manifold Cr until we reach another

fast subsystem with y = y∗ > 0 that has another heteroclinic connection. We

denote the two equilibria of this system by (x∗1,r,0) and (x∗1,l,0). After traversing

the second heteroclinic connection we follow the slow flow on Cl down to the

equilibrium (0,0,0). The result we want to prove is:
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Theorem 2.6.1. If ǫ > 0 is sufficiently small the FitzHugh-Nagumo equation (2.44)

has a homoclinic orbit for a wave speed s that is O(ǫ) close to s∗. The homoclinic orbit

lies within O(ǫ) Hausdorff-distance of the singular orbit and is locally unique.

Before we describe the detailed proof we outline the strategy. Regarding

s ∈ [s∗ − δ, s∗ + δ] as a parameter the origin 0 = (0,0,0) = (x1, x2, y) in (2.15)

has a one-dimensional unstable manifold Wu(0, s); here δ > 0 is assumed to be

sufficiently small. If we take he union over all these parameter values we obtain

a center-unstable manifold

Wcu
=

⋃

s∈[s∗−δ,s∗+δ]
Wu(0, s)

We can view this manifold as the center-unstable manifold of the equilibrium

the FitzHugh-Nagumo equation extended by s′ = 0:

x′1 = x2

x′2 =
1
5

(sx2 − f (x1) + y) (2.45)

y′ =
ǫ

s
(x1 − y)

s′ = 0

Similarly we consider the three-dimensional center-stable manifold Wcs. The

goal is to show that Wcu intersects Wcs transversely in (x1, x2, y, s) space. Count-

ing dimensions we get that if the intersection is transverse then the manifolds

must intersect in a curve for some s0 near s∗. Note that this value s0 is fixed since

there is no flow in the s-direction in (2.45). Hence we have a homoclinic orbit for

s = s0 which is locally unique. This “simplifies” the problem to demonstrating

the transversality of Wcu and Wcs. Obviously we have to use information about

the singular limit versions of these manifolds. If we set ǫ = 0 in (2.45) and set

y = 0 then we obtain a three-dimensional system which has a two-dimensional
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center-unstable manifold Wcu(0,0, s) to (x1, x2) = (0,0). Similarly we get a two-

dimensional center-stable manifold Wcs(1,0, s) to the second saddle-equilibrium

of the fast subsystem (x1, x2) = (1,0). We want that the two manifolds intersect

along the heteroclinic connection for s = s∗. The situation is abstractly shown in

Figure 2.8.

Wcs(1,0, s)Wcu(0,0, s)

(0,0, s∗)
(1,0, s∗)

Figure 2.8: Sketch of transversal intersection of the manifolds Wcu(0,0, s)
and Wcs(1,0, s).

The geometric reason for the transversal intersection is that the heteroclinic

connection breaks for s , s∗. There are many ways to prove this claim but for

now we shall just state it.

Lemma 2.6.2. Wcu(0,0, s) intersects Wcs(1,0, s) transversely in (x1, x2, s) space along

the curve defined by s = s∗.

A similar result should hold for the second heteroclinic connection from Cr

to Cl. Now fix s = s∗ and let y vary in a neighborhood of y∗.

Lemma 2.6.3. Wcu(x∗1,r,0, y) intersects Wcs(x∗1,l,0, y) transversely in (x1, x2, y) space

along the curve defined by y = y∗.

The next step is to define C̄r as the compact part of Cr given by y ∈ [−δ, y∗ + δ]
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and set Iδ := [s∗ − δ, s∗ + δ]. We want to follow Wcu close to the slow manifold

S r,ǫ associated to C̄r × Iδ using the Exchange Lemma. Having all definitions and

preliminaries in place we can outline the proof of Theorem 2.6.1.

Proof. (of Theorem 2.6.1, Sketch, see [69]) We now work in the four-dimensional

space (x1, x2, y, s) and with equation (2.45). For ǫ > 0 sufficiently small we

can assume that the center-unstable manifold Wcu is close to the singular ob-

ject Wcu(0,0, s). The stability of transverse intersection under perturbation and

Lemma 2.6.2 imply that Wcu intersects the stable manifold W s(S r,ǫ) of the slow

manifold S r,ǫ transversely. Now we can apply the Exchange Lemma to follow

Wcu close to S r,ǫ and conclude that it can be followed for ǫ sufficiently small up

to y ≈ y∗ and that it leaves the vicinity of S r,ǫ C1-close to Wu(S r,ǫ). Note that the

C1 conclusion is crucial here for the following step.

Since Wcu is now C1-close to Wu(S r,ǫ) it is also C1-close to the singular object

Wcu(x∗1,r,0, y). Hence we can use Lemma 2.6.3 and the stability of transversal

intersection (transversality is defined by a C1 condition!) to conclude that Wcu

intersects the stable manifold W s(S l,ǫ) of the compact part of the slow manifold

S l,ǫ associated to Cl × Iδ transversely. Now we can follow Wcu close to S l,ǫ . Since

S l,ǫ is very close to Cl × Iδ for ǫ > 0 sufficiently small by Fenichel Theory we

have that Wcu - after we have followed it around - is close to the center-stable

manifold of the origin Wcs. Hence can conclude the transversal intersection of

two-dimensional manifold Wcu and the three-dimensional manifold Wcs. �

Remark: Note that this procedure not only defined a one-dimensional inter-

section curve fixing s0 close to s∗ but also fixed a value y0 close to y∗ determining
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where the second “fast jump” occurred in the homoclinic orbit.

It remains to show Lemma 2.6.2 and Lemma 2.6.3. Since their proofs are very

similar we only prove Lemma 2.6.2.

Proof. (of Lemma 2.6.2) We use differential forms as we did in the proof of the

Exchange Lemma. Hence we look at the variational equations for the fast sub-

system with s′ = 0 appended are:

(dx1)
′
= dx2

(dx2)
′
= sdx2 + x2ds − f ′(x1)dx1

(ds)′ = 0

We define 2-forms by a simplified notation, e.g. Px1x2 = dx1 ∧ dx2. The equation

on 2-forms to use for the transversality argument is:

P′x1x2
= sPx1x2 + x2Px1s (2.46)

This equation can be derived, as usual, by differentiating the form dx1 ∧ dx2 us-

ing the chain rule and the form of the variational equation. We want to look

at Px1x2 and Px1s evaluated on tangent planes to the manifolds Wcu(0,0, s) =: Mu

and Wcs(1,0, s) =: Ms. Note that we assume that the tangent vectors have been

normalized before we evaluate the forms. We shall denote values of the forms

on these planes by P±x1x2
and P±x1s where “+” indicates unstable and “-” indicates

stable. Suppose we can show that P+x1x2
and P+x1s have the same sign and P−x1x2

and P−x1s have opposite signs. Now look at the vector of forms (Px1x2, Px1s, Px2s).

In this scenario they are linearly independent tangent vectors to Mu and Ms. This

means that Mu and Ms intersect transversely.
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Hence we reduced the problem to checking signs. Obviously Mu and Ms

have the vector field (x2, sx2 − f (x1),0) as tangent vector. Consider another tan-

gent vector given by (a±, b±, c = 1). We want to take the third coordinate to be

1 to assure that the vector is linearly independent from the vector field and this

is justified since (ds)′ = 0 (Check!). We can make the two vectors orthonormal

using the Gram-Schmidt algorithm. We conclude that the forms P±... are equal -

up to a positive normalization factor N > 0 - to the corresponding 2× 2 subde-

terminant of the 2× 3 matrix






















x2 sx2 − f (x1) 0

a± b± 1























In particular for P±x1s this means:

P±x1s = N

∣

∣

∣

∣

∣

∣

∣

∣

∣

x2 0

a± 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= Nx2

From the fast subsystem it follows that x2 > 0 on Mu and Ms. Therefore P±x1s =

Nx2 > 0 and equation (2.46) can be simplified to:

P±
′

x1x2
= sPx1x2 + N(x2)

2 (2.47)

The next step is to look at the signs of P±x1x2
. Observe that Mu and Ms both have

a line of equilibrium points with a tangent vector in the s-direction; this follows

directly from the construction as we have appended the equation s′ = 0. For

any plane containing such a line the form Px1x2 must vanish. Suppose the time

variable in the differential equations we have written down so far is t. Then if

t → ∞ we must have P−x1x2
→ 0 due to the location of the line of equilibrium

points. This implies that Px1x2 < 0 since equation (2.47) has a positive right-hand

side for t sufficiently large. Similarly it follows that if t → −∞ then P+x1x2
→ 0 and

so P+x1x2
> 0. This shows the sign condition we want. �
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CHAPTER 3

PAPER I: “HOMOCLINIC ORBITS OF THE FITZHUGH-NAGUMO

EQUATION: THE SINGULAR LIMIT”

3.1 Abstract

The FitzHugh-Nagumo equation has been investigated with a wide array of

different methods in the last three decades. Recently a version of the equations

with an applied current was analyzed by Champneys, Kirk, Knobloch, Olde-

man and Sneyd [18] using numerical continuation methods. They obtained a

complicated bifurcation diagram in parameter space featuring a C-shaped curve

of homoclinic bifurcations and a U-shaped curve of Hopf bifurcations. We use

techniques from multiple time-scale dynamics to understand the structures of

this bifurcation diagram based on geometric singular perturbation analysis of

the FitzHugh-Nagumo equation. Numerical and analytical techniques show

that if the ratio of the time-scales in the FitzHugh-Nagumo equation tends to

zero, then our singular limit analysis correctly represents the observed CU-

structure. Geometric insight from the analysis can even be used to compute

bifurcation curves which are inaccessible via continuation methods. The results

of our analysis are summarized in a singular bifurcation diagram.

Remark: Copyright (c)[2009] Discrete and Continuous Dynamical Systems -

Series S. Reprinted with permission. All rights reserved.
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3.2 Introduction

3.2.1 Fast-Slow Systems

Fast-slow systems of ordinary differential equations (ODEs) have the general

form:

ǫ ẋ = ǫ
dx
dτ
= f (x, y, ǫ) (3.1)

ẏ =
dy
dτ
= g(x, y, ǫ)

where x ∈ R
m, y ∈ R

n and 0 ≤ ǫ ≪ 1 represents the ratio of time scales. The func-

tions f and g are assumed to be sufficiently smooth. In the singular limit ǫ → 0

the vector field (3.1) becomes a differential-algebraic equation. The algebraic

constraint f = 0 defines the critical manifold C0 = {(x, y) ∈ R
m×R

n : f (x, y,0) = 0}.

Where Dx f (p) is nonsingular, the implicit function theorem implies that there

exists a map h(x) = y parameterizing C0 as a graph. This yields the implicitly

defined vector field ẏ = g(h(y), y,0) on C0 called the slow flow.

We can change (3.1) to the fast time scale t = τ/ǫ and let ǫ → 0 to obtain the

second possible singular limit system

x′ =
dx
dt
= f (x, y,0) (3.2)

y′ =
dy
dt
= 0

We call the vector field (3.2) parametrized by the slow variables y the fast sub-

system or the layer equations. The central idea of singular perturbation analy-

sis is to use information about the fast subsystem and the slow flow to under-

stand the full system (3.1). One of the main tools is Fenichel’s Theorem (see
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[39, 40, 41, 42]). It states that for every ǫ sufficiently small and C0 normally hy-

perbolic there exists a family of invariant manifolds Cǫ for the flow (3.1). The

manifolds are at a distance O(ǫ) from C0 and the flows on them converge to the

slow flow on C0 as ǫ → 0. Points p ∈ C0 where Dx f (p) is singular are referred to

as fold points1.

Beyond Fenichel’s Theorem many other techniques have been developed.

More detailed introductions and results can be found in [1, 71, 49] from a geo-

metric viewpoint. Asymptotic methods are developed in [93, 47] whereas ideas

from nonstandard analysis are introduced in [28]. While the theory is well de-

veloped for two-dimensional fast-slow systems, higher-dimensional fast-slow

systems are an active area of current research. In the following we shall fo-

cus on the FitzHugh-Nagumo equation viewed as a three-dimensional fast-slow

system.

3.2.2 The FitzHugh-Nagumo Equation

The FitzHugh-Nagumo equation is a simplification of the Hodgin-Huxley

model for an electric potential of a nerve axon [65]. The first version was de-

veloped by FitzHugh [43] and is a two-dimensional system of ODEs:

ǫu̇ = v − u3

3
+ u + p (3.3)

v̇ = −1
s
(v + γu − a)

1The projection of C0 onto the x coordinates may have more degenerate singularities than
fold singularities at some of these points.
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A detailed summary of the bifurcations of (3.3) can be found in [97]. Nagumo et

al. [94] studied a related equation that adds a diffusion term for the conduction

process of action potentials along nerves:























uτ = δuxx + fa(u) − w + p

wτ = ǫ(u − γw)
(3.4)

where fa(u) = u(u−a)(1−u) and p, γ, δ and a are parameters. A good introduction

to the derivation and problems associated with (3.4) can be found in [62]. Sup-

pose we assume a traveling wave solution to (3.4) and set u(x, τ) = u(x+ sτ) = u(t)

and w(x, τ) = w(x + sτ) = w(t), where s represents the wave speed. By the chain

rule we get uτ = su′, uxx = u′′ and wτ = sw′. Set v = u′ and substitute into (3.4) to

obtain the system:

u′ = v

v′ =
1
δ

(sv − fa(u) + w − p) (3.5)

w′ =
ǫ

s
(u − γw)

System (3.5) is the FitzHugh-Nagumo equation studied in this paper. Observe

that a homoclinic orbit of (3.5) corresponds to a traveling pulse solution of (3.4).

These solutions are of special importance in neuroscience [62] and have been

analyzed using several different methods. For example, it has been proved that

(3.5) admits homoclinic orbits [63, 15] for small wave speeds (“slow waves”) and

large wave speeds (“fast waves”). Fast waves are stable [70] and slow waves are

unstable [44]. It has been shown that double-pulse homoclinic orbits [38] are

possible. If (3.5) has two equilibrium points and heteroclinic connections exist,

bifurcation from a twisted double heteroclinic connection implies the existence

of multi-pulse traveling front and back waves [22]. These results are based on

the assumption of certain parameter ranges for which we refer to the original
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papers. Geometric singular perturbation theory has been used successfully to

analyze (3.5). In [69] the fast pulse is constructed using the exchange lemma

[72, 68, 14]. The exchange lemma has also been used to prove the existence of a

codimension two connection between fast and slow waves in (s, ǫ, a)-parameter

space [82]. An extension of Fenichel’s theorem and Melnikov’s method can

be employed to prove the existence of heteroclinic connections for parameter

regimes of (3.5) with two fixed points [103]. The general theory of relaxation

oscillations in fast-slow systems applies to (3.5) (see e.g. [93, 51]) as does - at

least partially - the theory of canards (see e.g. [104, 35, 37, 86]).

The equations (3.5) have been analyzed numerically by Champneys, Kirk,

Knobloch, Oldeman and Sneyd [18] using the numerical bifurcation software

AUTO [32, 33]. They considered the following parameter values:

γ = 1, a =
1
10
, δ = 5

We shall fix those values to allow comparison of our results with theirs. Hence

we also write f1/10(u) = f (u). Changing from the fast time t to the slow time τ

and relabeling variables x1 = u, x2 = v and y = w we get:

ǫ ẋ1 = x2

ǫ ẋ2 =
1
5

(sx2 − x1(x1 − 1)(
1
10
− x1) + y − p) =

1
5

(sx2 − f (x1) + y − p) (3.6)

ẏ =
1
s
(x1 − y)

From now on we refer to (3.6) as “the” FitzHugh-Nagumo equation. Investi-

gating bifurcations in the (p, s) parameter space one finds C-shaped curves of

homoclinic orbits and a U-shaped curve of Hopf bifurcations; see Figure 3.1.

Only part of the bifurcation diagram is shown in Figure 3.1. There is another
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curve of homoclinic bifurcations on the right side of the U-shaped Hopf curve.

Since (3.6) has the symmetry

x1→
11
15
− x1, x2→

11
15
− x2, y→ −y, p→ 11

15

(

1− 33
225

)

− p (3.7)

we shall examine only the left side of the U-curve. The homoclinic C-curve is

difficult to compute numerically by continuation methods using AUTO [32, 33]

or MatCont [46]. The computations seem infeasible for small values of ǫ ≤ 10−3.

Furthermore multi-pulse homoclinic orbits can exist very close to single pulse

ones and distinguishing between them must necessarily encounter problems

with numerical precision [18]. The Hopf curve and the bifurcations of limit cy-

cles shown in Figure 3.1 have been computed using MatCont. The curve of

homoclinic bifurcations has been computed by a new method to be described in

Section 3.4.2.

Since the bifurcation structure shown in Figure 3.1 was also observed for

other excitable systems, Champneys et al. [18] introduced the term CU-system.

Bifurcation analysis from the viewpoint of geometric singular perturbation the-

ory has been carried out for examples with one fast and two slow variables

[60, 11, 50, 92]. Since the FitzHugh-Nagumo equation has one slow and two

fast variables, the situation is quite different and new techniques have to be

developed. Our main goal is to show that many features of the complicated 2-

parameter bifurcation diagram shown in Figure 3.1 can be derived with a com-

bination of techniques from singular perturbation theory, bifurcation theory and

robust numerical methods. We accurately locate where the system has canards

and determine the orbit structure of the homoclinic and periodic orbits associ-

ated to the C-shaped and U-shaped bifurcation curves, without computing the

canards themselves. We demonstrate that the basic CU-structure of the system
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Figure 3.1: Bifurcation diagram of (3.6). Hopf bifurcations are shown in
green, saddle-node of limit cycles (SNLC) are shown in blue
and GH indicates a generalized Hopf (or Bautin) bifurcation.
The arrows indicate the side on which periodic orbits are gen-
erated at the Hopf bifurcation. The red curve shows (possi-
ble) homoclinic orbits; in fact, homoclinic orbits only exist to
the left of the two black dots (see Section 3.4.2). Only part of
the parameter space is shown because of the symmetry (3.7).
The homoclinic curve has been thickened to indicate that mul-
tipulse homoclinic orbits exist very close to single pulse ones
(see [38]).

can be computed with elementary methods that do not use continuation meth-

ods based on collocation. The analysis of the slow and fast subsystems yields

a “singular bifurcation diagram” to which the basic CU structure in Figure 3.1

converges as ǫ → 0.

Remark: We have also investigated the termination mechanism of the C-

shaped homoclinic curve described in [18]. Champneys et al. observed that

the homoclinic curve does not reach the U-shaped Hopf curve but turns around

and folds back close to itself. We compute accurate approximations of the ho-
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moclinic orbits for smaller values ǫ than seems possible with AUTO in this re-

gion. One aspect of our analysis is a new algorithm for computing invariant

slow manifolds of saddle type in the full system. This work will be described

elsewhere.

3.3 The Singular Limit

The first step in our analysis is to investigate the slow and fast subsystems sep-

arately. Let ǫ → 0 in (3.6); this yields two algebraic constraints that define the

critical manifold:

C0 =

{

(x1, x2, y) ∈ R
3 : x2 = 0 y = x1(x1 − 1)(

1
10
− x1) + p = c(x1)

}

Therefore C0 is a cubic curve in the coordinate plane x2 = 0. The parameter p

moves the cubic up and down inside this plane. The critical points of the cubic

are solutions of c′(x1) = 0 and are given by:

x1,± =
1
30

(

11±
√

91
)

or numerically: x1,+ ≈ 0.6846, x1,− ≈ 0.0487

The points x1,± are fold points with |c′′(x1,±)| , 0 since C0 is a cubic polynomial

with distinct critical points. The fold points divide C0 into three segments

Cl = {x1 < x1,−} ∩C0, Cm = {x1,− ≤ x1 ≤ x1,+} ∩C0, Cr = {x1,+ < x1} ∩C0

We denote the associated slow manifolds by Cl,ǫ , Cm,ǫ and Cr,ǫ . There are two

possibilities to obtain the slow flow. One way is to solve c(x1) = y for x1 and

substitute the result into the equation ẏ = 1
s (x1 − y). Alternatively differentiating

y = c(x1) implicitly with respect to τ yields ẏ = ẋ1c′(x1) and therefore

1
s
(x1 − y) = ẋ1c′(x1) ⇒ ẋ1 =

1
sc′(x1)

(x1 − c(x1)) (3.8)
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One can view this as a projection of the slow flow, which is constrained to the

critical manifold in R
3, onto the x1-axis. Observe that the slow flow is singu-

lar at the fold points. Direct computation shows that the fixed point problem

x1 = c(x1) has only a single real solution. This implies that the critical mani-

fold intersects the diagonal y = x1 only in a single point x∗1 which is the unique

equilibrium of the slow flow (3.8). Observe that q = (x∗1,0, x
∗
1) is also the unique

equilibrium of the full system (3.6) and depends on p. Increasing p moves the

equilibrium from left to right on the critical manifold. The easiest practical way

to determine the direction of the slow flow on C0 is to look at the sign of (x1− y).

The situation is illustrated in Figure 3.2.
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Slow Flow in the plane x
2
=0

C
0

eq. pt. q

y=x
1

x
1,+

x
1,−

Figure 3.2: Sketch of the slow flow on the critical manifold C0

3.3.1 The Slow Flow

We are interested in the bifurcations of the slow flow depending on the parame-

ter p. The bifurcations occur when x∗1 passes through the fold points. The values
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of p can simply be found by solving the equations c′(x1) = 0 and c(x1) − x1 = 0

simultaneously. The result is:

p− ≈ 0.0511 and p+ ≈ 0.5584

where the subscripts indicate the fold point at which each equilibrium is located.

The singular time-rescaling τ̄ = sc′(x1)/τ of the slow flow yields the desingu-

larized slow flow

dx1

dτ̄
= x1 − c(x1) = x1 +

x1

10
(x1 − 1) (10x1 − 1) − p (3.9)

Time is reversed by this rescaling on Cl and Cr since s > 0 and c′(x1) is negative

on these branches. The desingularized slow flow (3.9) is smooth and has no

bifurcations as p is varied.

3.3.2 The Fast Subsystem

The key component of the fast-slow analysis for the FitzHugh-Nagumo equa-

tion is the two-dimensional fast subsystem

x′1 = x2

x′2 =
1
5

(sx2 − x1(x1 − 1)(
1
10
− x1) + y − p) (3.10)

where p ≥ 0, s ≥ 0 are parameters and y is fixed. Since y and p have the same

effect as bifurcation parameters we set p − y = p̄. We consider several fixed y-

values and the effect of varying p (cf. Section 3.4.2) in each case. There are either

one, two or three equilibrium points for (3.10). Equilibrium points satisfy x2 = 0

and lie on the critical manifold, i.e. we have to solve

0 = x1(x1 − 1)(
1
10
− x1) + p̄ (3.11)
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for x1. We find that there are three equilibria for approximately p̄l = −0.1262<

p̄ < 0.0024 = p̄r, two equilibria on the boundary of this p interval and one

equilibrium otherwise. The Jacobian of (3.10) at an equilibrium is

A(x1) =























0 1

1
50

(

1− 22x1 + 30x2
1

)

s
5























Direct calculation yields that for p < [ p̄l, p̄r] the single equilibrium is a saddle.

In the case of three equilibria, we have a source that lies between two saddles.

Note that this also describes the stability of the three branches of the critical

manifold Cl, Cm and Cr. For s > 0 the matrix A is singular of rank 1 if and only

if 30x2
1 − 22x1 + 1 = 0 which occurs for the fold points x1,±. Hence the equilib-

ria of the fast subsystem undergo a fold (or saddle-node) bifurcation once they

approach the fold points of the critical manifold. This happens for parameter

values p̄l and p̄r. Note that by symmetry we can reduce to studying a single

fold point. In the limit s = 0 (corresponding to the case of a “standing wave”)

the saddle-node bifurcation point becomes more degenerate with A(x1) nilpo-

tent.

Our next goal is to investigate global bifurcations of (3.10); we start with

homoclinic orbits. For s = 0 it is easy to see that (3.10) is a Hamiltonian system:

x′1 =
∂H
∂x2
= x2

x′2 = −
∂H
∂x1
=

1
5

(−x1(x1 − 1)(
1
10
− x1) − p̄) (3.12)

with Hamiltonian function

H(x1, x2) =
1
2

x2
2 −

(x1)2

100
+

11(x1)3

150
− (x1)4

20
+

x1 p̄
5

(3.13)

We will use this Hamiltonian formulation later on to describe the geometry of

homoclinic orbits for slow wave speeds. Assume that p̄ is chosen so that (3.12)
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has a homoclinic orbit x0(t). We are interested in perturbations with s > 0 and

note that in this case the divergence of (3.10) is s. Hence the vector field is

area expanding everywhere. The homoclinic orbit breaks for s > 0 and no

periodic orbits are created. Note that this scenario does not apply to the full

three-dimensional system as the equilibrium q has a pair of complex conjugate

eigenvalues so that a Shil’nikov scenario can occur. This illustrates that the sin-

gular limit can be used to help locate homoclinic orbits of the full system, but

that some characteristics of these orbits change in the singular limit.

We are interested next in finding curves in (p̄, s)-parameter space that rep-

resent heteroclinic connections of the fast subsystem. The main motivation is

the decomposition of trajectories in the full system into slow and fast segments.

Concatenating fast heteroclinic segments and slow flow segments can yield ho-

moclinic orbits of the full system [62, 15, 69, 82]. We describe a numerical strat-

egy to detect heteroclinic connections in the fast subsystem and continue them

in parameter space. Suppose that p̄ ∈ (p̄l, p̄r) so that (3.10) has three hyperbolic

equilibrium points xl, xm and xr. We denote by Wu(xl) the unstable and by W s(xl)

the stable manifold of xl. The same notation is also used for xr and tangent

spaces to W s(.) and Wu(.) are denoted by T s(.) and T u(.). Recall that xm is a source

and shall not be of interest to us for now. Define the cross section Σ by

Σ = {(x1, x2) ∈ R
2 : x1 =

xl + xr

2
}.

We use forward integration of initial conditions in T u(xl) and backward integra-

tion of initial conditions in T s(xr) to obtain trajectories γ+ and γ− respectively.

We calculate their intersection with Σ and define

γl(p̄, s) := γ+ ∩ Σ, γr(p̄, s) := γ− ∩ Σ
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We compute the functions γl and γr for different parameter values of (p̄, s) nu-

merically. Heteroclinic connections occur at zeros of the function

h(p̄, s) := γl(p̄, s) − γr(p̄, s)

Once we find a parameter pair (p̄0, s0) such that h(p̄0, s0) = 0, these parameters

can be continued along a curve of heteroclinic connections in (p̄, s) parameter

space by solving the root-finding problem h(p̄0 + δ1, s0 + δ2) = 0 for either δ1

or δ2 fixed and small. We use this method later for different fixed values of y

to compute heteroclinic connections in the fast subsystem in (p, s) parameter

space. The results of these computations are illustrated in Figure 3.3. There are

two distinct branches in Figure 3.3. The branches are asymptotic to p̄l and p̄r

and approximately form a “V”. From Figure 3.3 we conjecture that there exists

a double heteroclinic orbit for p̄ ≈ −0.0622.

−0.15 −0.1 −0.05 0 0.05
0

0.5

1

1.5

p̄

s

Figure 3.3: Heteroclinic connections for equation (3.10) in parameter
space.

Remarks: If we fix p = 0 our initial change of variable becomes −y = p̄ and

our results for heteroclinic connections are for the FitzHugh-Nagumo equation

without an applied current. In this situation it has been shown that the hete-

roclinic connections of the fast subsystem can be used to prove the existence of
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homoclinic orbits to the unique saddle equilibrium (0,0,0) (cf. [69]). Note that

the existence of the heteroclinics in the fast subsystem was proved in a special

case analytically [2] but Figure 3.3 is - to the best of our knowledge - the first ex-

plicit computation of where fast subsystem heteroclinics are located. The paper

[78] develops a method for finding heteroclinic connections by the same basic

approach we used, i.e. defining a codimension one hyperplane H that separates

equilibrium points.

Figure 3.3 suggests that there exists a double heteroclinic connection for s =

0. Observe that the Hamiltonian in our case is H(x1, x2) =
(x2)2

2 + V(x1) where the

function V(x1) is:

V(x1) =
px1

5
− (x1)2

100
+

11(x1)3

150
− (x1)4

20

The solution curves of (3.12) are given by x2 = ±
√

2(const. − V(x1)). The struc-

ture of the solution curves entails symmetry under reflection about the x1-axis.

Suppose p̄ ∈ [ p̄l, p̄r] and recall that we denoted the two saddle points of (3.10)

by xl and xr and that their location depends on p̄. Therefore, we conclude that

the two saddles xl and xr must have a heteroclinic connection if they lie on the

same energy level, i.e. they satisfy V(xl)−V(xr) = 0. This equation can be solved

numerically to very high accuracy.

Proposition 3.3.1. The fast subsystem of the FitzHugh-Nagumo equation for s = 0

has a double heteroclinic connection for p̄ = p̄∗ ≈ −0.0619259. Given a particular value

y = y0 there exists a double heteroclinic connection for p = p̄∗ + y0 in the fast subsystem

lying in the plane y = y0.
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3.3.3 Two Slow Variables, One Fast Variable

From continuation of periodic orbits in the full system - to be described in Sec-

tion 3.4.1 - we observe that near the U-shaped curve of Hopf bifurcations the

x2-coordinate is a faster variable than x1. In particular, the small periodic orbits

generated in the Hopf bifurcation lie almost in the plane x2 = 0. Hence to ana-

lyze this region we set x̄2 = x2/ǫ to transform the FitzHugh-Nagumo equation

(3.6) into a system with 2 slow and 1 fast variable:

ẋ1 = x̄2

ǫ2 ˙̄x2 =
1
5

(sǫ x̄2 − x1(x1 − 1)(
1
10
− x1) + y − p) (3.14)

ẏ =
1
s
(x1 − y)

Note that (3.14) corresponds to the FitzHugh-Nagumo equation in the form (cf.

(3.4)):






















uτ = 5ǫ2uxx + f (u) − w + p

wτ = ǫ(u − w)
(3.15)

Therefore the transformation x̄2 = x2/ǫ can be viewed as a rescaling of the dif-

fusion strength by ǫ2. We introduce a new independent small parameter δ̄ = ǫ2

and then let δ̄ = ǫ2→ 0. This assumes that O(ǫ) terms do not vanish in this limit,

yielding the diffusion free system. Then the slow manifold S 0 of (3.14) is:

S 0 =

{

(x1, x̄2, y) ∈ R
3 : x̄2 =

1
sǫ

( f (x1) − y + p)

}

(3.16)

Proposition 3.3.2. Following time rescaling by s, the slow flow of system (3.14) on S 0

in the variables (x1, y) is given by

ǫ ẋ1 = f (x1) − y + p

ẏ = x1 − y (3.17)
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In the variables (x1, x̄2) the vector field (3.17) becomes

ẋ1 = x̄2

ǫ ˙̄x2 = −
1
s2

(x1 − f (x1) − p) +
x̄2

s
(

f ′(x1) − ǫ
)

(3.18)

Remark: The reduction to equations (3.17)-(3.18) suggests that (3.14) is a three

time-scale system. Note however that (3.14) is not given in the three time-scale

form (ǫ2ż1, ǫ ż2, ż3) = (h1(z), h2(z), h3(z)) for z = (z1, z2, z3) ∈ R
3 and hi : R

3 → R

(i = 1,2,3). The time-scale separation in (3.17)-(3.18) results from the singular

1/ǫ dependence of the critical manifold S 0; see (3.16).

Proof. (of Proposition 3.3.2) Use the defining equation for the slow manifold

(3.16) and substitute it into ẋ1 = x̄2. A rescaling of time by t → st under the

assumption that s > 0 yields the result (3.17). To derive (3.18) differentiate the

defining equation of S 0 with respect to time:

˙̄x2 =
1
sǫ

(

ẋ1 f ′(x1) − ẏ
)

=
1
sǫ

(

x̄2 f ′(x1) − ẏ
)

The equations ẏ = 1
s (x1−y) and y = −sǫ x̄2+ f (x1)+ p yield the equations (3.18). �

Before we start with the analysis of (3.17) we note that detailed bifurcation

calculations for (3.17) exist. For example, Rocsoreanu et al. [97] give a detailed

overview on the FitzHugh equation (3.17) and collect many relevant references.

Therefore we shall only state the relevant bifurcation results and focus on the

fast-slow structure and canards. Equation (3.17) has a critical manifold given

by y = f (x1) + p = c(x1) which coincides with the critical manifold of the full

FitzHugh-Nagumo system (3.6). Formally it is located in R
2 but we still denote

it by C0. Recall that the fold points are located at

x1,± =
1
30

(

11±
√

91
)

or numerically: x1,+ ≈ 0.6846, x1,− ≈ 0.0487
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Also recall that the y-nullcline passes through the fold points at:

p− ≈ 0.0511 and p+ ≈ 0.5584

We easily find that supercritical Hopf bifurcations are located at the values

pH,±(ǫ) =
2057
6750

±
√

11728171
182250000

− 359ǫ
1350

+
509ǫ2

2700
− ǫ3

27
(3.19)

For the case ǫ = 0.01 we get pH,−(0.01) ≈ 0.05632and pH,+(0.01) ≈ 0.55316. The

periodic orbits generated in the Hopf bifurcations exist for p ∈ (pH,−, pH,+). Ob-

serve also that pH,±(0) = p±; so the Hopf bifurcations of (3.17) coincide in the

singular limit with the fold bifurcations in the one-dimensional slow flow (3.8).

We are also interested in canards in the system and calculate a first order asymp-

totic expansion for the location of the maximal canard in (3.17) following [83];

recall that trajectories lying in the intersection of attracting and repelling slow

manifolds are called maximal canards. We restrict to canards near the fold point

(x1,−, c(x1,−)).

Proposition 3.3.3. Near the fold point (x1,−, c(x1,−)) the maximal canard in (p, ǫ) pa-

rameter space is given by:

p(ǫ) = x1,− − c(x1,−) +
5
8
ǫ + O(ǫ3/2)

Proof. Let ȳ = y − p and consider the shifts

x1→ x1 + x1,−, ȳ→ ȳ + c(x1,−), p→ p + x1,− − c(x1,−)

to translate the equilibrium of (3.17) to the origin when p = 0. This gives

x′1 = x2
1













√
91

10
− x1













− ȳ = f̄ (x1, ȳ)

y′ = ǫ(x1 − ȳ − p) = ǫ(ḡ(x1, ȳ) − p) (3.20)
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Now apply Theorem 3.1 in [83] to find that the maximal canard of (3.20) is given

by:

p(ǫ) =
5
8
ǫ + O(ǫ3/2)

Shifting the parameter p back to the original coordinates yields the result. �

If we substitute ǫ = 0.01 in the previous asymptotic result and neglect terms

of order O(ǫ3/2) then the maximal canard is predicted to occur for p ≈ 0.05731

which is right after the first supercritical Hopf bifurcation at pH,− ≈ 0.05632.

Therefore we expect that there exist canard orbits evolving along the middle

branch of the critical manifold Cm,0.01 in the full FitzHugh-Nagumo equation.

Maximal canards are part of a process generally referred to as canard explosion

[36, 86, 29]. In this situation the small periodic orbits generated in the Hopf bi-

furcation at p = pH,− undergo a transition to relaxation oscillations within a very

small interval in parameter space. A variational integral determines whether

the canards are stable [86, 51].

Proposition 3.3.4. The canard cycles generated near the maximal canard point in pa-

rameter space for equation (3.17) are stable.

Proof. Consider the differential equation (3.17) in its transformed form (3.20).

Obviously this will not affect the stability analysis of any limit cycles. Let xl(h)

and xm(h) denote the two smallest x1-coordinates of the intersection between

C̄0 := {(x1, ȳ) ∈ R
2 : ȳ =

√
91

10
x2

1 − x3
1 = φ(x1)}

and the line ȳ = h. Geometrically xl represents a point on the left branch and

xm a point on the middle branch of the critical manifold C̄0. Theorem 3.4 in [86]

tells us that the canards are stable cycles if the function

R(h) =
∫ xm(h)

xl(h)

∂ f̄
∂x1

(x1, φ(x1))
φ′(x1)

ḡ(x1, φ(x1))
dx1
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is negative for all values h ∈ (0, φ(
√

91
15 )] where x1 =

√
91

15 is the second fold point

of C̄0 besides x1 = 0. In our case we have

R(h) =
∫ xm(h)

xl(h)

(
√

91
5 x1 − 3x2

1)
2

x −
√

91
10 x2

1 + x3
1

dx

with xl(h) ∈ [−
√

91
30 ,0) and xm(h) ∈ (0,

√
91

15 ]. Figure 3.4 shows a numerical plot of

the function R(h) for the relevant values of h which confirms the required result.

0.02 0.04 0.06 0.08 0.10 0.12
h

-0.10

-0.08

-0.06

-0.04

-0.02

R

Figure 3.4: Plot of the function R(h) for h ∈ (0, φ(
√

91
15 )].

Remark: We have computed an explicit algebraic expression for R′(h) with a

computer algebra system. This expression yields R′(h) < 0 for h ∈ (0, φ(
√

91
15 )],

confirming that R(h) is decreasing.

�

As long as we stay on the critical manifold C0 of the full system, the analysis

of the bifurcations and geometry of (3.17) give good approximations to the dy-

namics of the FitzHugh-Nagumo equation because the rescaling x2 = ǫ x̄2 leaves

the plane x2 = 0 invariant. Next we use the dynamics of the x̄2-coordinate in

system (3.18) to obtain better insight into the dynamics when x2 , 0. The critical
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manifold D0 of (3.18) is:

D0 = {(x1, x̄2) ∈ R
2 : sx̄2c′(x1) = x1 − c(x1)}

We are interested in the geometry of the periodic orbits shown in Figure 3.5 that

emerge from the Hopf bifurcation at pH,−. Observe that the amplitude of the

orbits in the x1 direction is much larger that than in the x2-direction. Therefore

we predict only a single small excursion in the x2 direction for p slightly larger

than pH,− as shown in Figures 3.5(a) and 3.5(c). The wave speed changes the

amplitude of this x2 excursion with a smaller wave speed implying a larger

excursion. Hence equation (3.17) is expected to be a very good approximation

for periodic orbits in the FitzHugh-Nagumo equation with fast wave speeds.

Furthermore the periodic orbits show two x2 excursions in the relaxation regime

after the canard explosion; see Figure 3.5(b).
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Figure 3.5: Geometry of periodic orbits in the (x1, x2)-variables of the 2-
variable slow subsystem (3.18). Note that here x2 = ǫ x̄2 is
shown. Orbits have been obtained by direct forward integra-
tion for ǫ = 0.01.
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3.4 The Full System

3.4.1 Hopf Bifurcation

The characteristic polynomial of the linearization of the FitzHugh-Nagumo

equation (3.6) at its unique equilibrium point is

P(λ) =
ǫ

5s
+

(

−ǫ
s
− λ

)

(

− 1
50
+

11x∗1
25
−

3(x∗1)
2

5
− sλ

5
+ λ2

)

Denoting P(λ) = c0 + c1λ + c2λ
2
+ c3λ

3, a necessary condition for P to have pure

imaginary roots is that c0 = c1c2. The solutions of this equation can be expressed

parametrically as a curve (p(x∗1), s(x∗1)):

s(x∗1)
2
=

50ǫ(ǫ − 1)
1+ 10ǫ − 22x∗1 + 30(x∗1)

2

p(x∗1) = (x∗1)
3 − 1.1(x∗1)

2
+ 1.1 (3.21)

Proposition 3.4.1. In the singular limit ǫ → 0 the U-shaped bifurcation curves of

the FitzHugh-Nagumo equation have vertical asymptotes given by the points p− ≈

0.0510636and p+ ≈ 0.558418and a horizontal asymptote given by {(p, s) : p ∈

[p−, p+] and s = 0}. Note that at p± the equilibrium point passes through the two

fold points.

Proof. The expression for s(x∗1)
2 in (3.21) is positive when 1+10ǫ−22x∗1+30(x∗1)

2 <

0. For values of x∗1 between the roots of 1− 22x∗1 + 30(x∗1)
2
= 0, s(x∗1)

2→ 0 in (3.21)

as ǫ → 0. The values of p− and p+ in the proposition are approximations to the

value of p(x∗1) in (3.21) at the roots of 1− 22x∗1 + 30(x∗1)
2
= 0. As ǫ → 0, solutions

of the equation s(x∗1)
2
= c > 0 in (3.21) yield values of x∗1 that tend to one of the

two roots of 1− 22x∗1 + 30(x∗1)
2
= 0. The result follows. �
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Figure 3.6: Hopf bifurcation at p ≈ 0.083, s = 1 and ǫ = 0.01. The critical
manifold C0 is shown in red and periodic orbits are shown in
blue. Only the first and the last critical manifold for the contin-
uation run are shown; not all periodic orbits obtained during
the continuation are displayed.

The analysis of the slow subsystems (3.17) and (3.18) gives a conjecture about

the shape of the periodic orbits in the FitzHugh-Nagumo equation. Consider

the parameter regime close to a Hopf bifurcation point. From (3.17) we expect

one part of the small periodic orbits generated in the Hopf bifurcation to lie

close to the slow manifolds Cl,ǫ and Cm,ǫ . Using the results about equation (3.18)

we anticipate the second part to consist of an excursion in the x2 direction whose

length is governed by the wave speed s. Figure 3.6 shows a numerical continu-

ation in MatCont [46] of the periodic orbits generated in a Hopf bifurcation and

confirms the singular limit analysis for small amplitude orbits.

Furthermore we observe from comparison of the x1 and x2 coordinates of the

periodic orbits in Figure 3.6(b) that orbits tend to lie close to the plane defined

by x2 = 0. More precisely, the x2 diameter of the periodic orbits is observed to

be O(ǫ) in this case. This indicates that the rescaling of Section 3.3.3 can help to

describe the system close to the U-shaped Hopf curve. Note that it is difficult to
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check whether this observation of an O(ǫ)-diameter in the x2-coordinate persists

for values of ǫ < 0.01 since numerical continuation of canard-type periodic or-

bits is difficult to use for smaller ǫ.
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Figure 3.7: Tracking of two generalized Hopf points (GH) in (p, s, ǫ)-
parameter space. Each point in the figure corresponds to a
different value of ǫ. The point GHǫ

1 in 3.7(a) corresponds to
the point shown as a square in Figure 3.1 and the point GHǫ

2 in
3.7(b) is further up on the left branch of the U-curve and is not
displayed in Figure 3.1.

In contrast to this, it is easily possible to compute the U-shaped Hopf curve

using numerical continuation for very small values of ǫ. We have used this

possibility to track two generalized Hopf bifurcation points in three parameters

(p, s, ǫ). The U-shaped Hopf curve has been computed by numerical continua-

tion for a mesh of parameter values for ǫ between 10−2 and 10−7 using MatCont

[46]. The two generalized Hopf points GHǫ
1,2 on the left half of the U-curve were

detected as codimension two points during each continuation run. The results

of this “three-parameter continuation” are shown in Figure 3.7.

The two generalized Hopf points depend on ǫ and we find that their singular
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limits in (p, s)-parameter space are approximately:

GH0
1 ≈ (p = 0.171, s = 0) and GH0

2 ≈ (p = 0.051, s = 3.927)

We have not found a way to recover these special points from the fast-slow de-

composition of the system. This suggests that codimension two bifurcations are

generally difficult to recover from the singular limit of fast-slow systems.

Furthermore the Hopf bifurcations for the full system on the left half of the

U-curve are subcritical between GHǫ
1 and GHǫ

2 and supercritical otherwise. For

the transformed system (3.14) with two slow and one fast variable we observed

that in the singular limit (3.17) for ǫ2 → 0 the Hopf bifurcation is supercritical.

In the case of ǫ = 0.01 the periodic orbits for (3.6) and (3.17) exist in overlapping

regions for the parameter p between the p-values of GH0.01
1 and GH0.01

2 . This re-

sult indicates that (3.14) can be used to describe periodic orbits that will interact

with the homoclinic C-curve.

3.4.2 Homoclinic Orbits

In the following discussion we refer to “the” C-shaped curve of homoclinic bi-

furcations of system (3.5) as the parameters yielding a “single-pulse” homoclinic

orbit. The literature as described in Section 3.2.2 shows that close to single-pulse

homoclinic orbits we can expect multi-pulse homoclinic orbits that return close

to the equilibrium point multiple times. Since the separation of slow manifolds

C·,ǫ is exponentially small, homoclinic orbits of different types will always occur

in exponentially thin bundles in parameter space. Values of ǫ < 0.005are small

enough that the parameter region containing all the homoclinic orbits will be
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indistinguishable numerically from “the” C-curve that we locate.

The history of proofs of the existence of homoclinic orbits in the FitzHugh-

Nagumo equation is quite extensive. The main step in their construction is the

existence of a “singular” homoclinic orbit γ0. We consider the case when the

fast subsystem has three equilibrium points which we denote by xl ∈ Cl, xm ∈ Cm

and xr ∈ Cr. Recall that xl coincides with the unique equilibrium q = (x∗1,0, x
∗
1) of

the full system for p < p−. A singular homoclinic orbit is always constructed by

first following the unstable manifold of xl in the fast subsystem given by y = x∗1.
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Figure 3.8: Homoclinic orbits as level curves of H(x1, x2) for equation (3.12)
with y = x∗1.

First assume that s = 0. In this case the Hamiltonian structure - see Sec-

tion 3.3.2 and equation (3.12) - can be used to show the existence of a singular
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homoclinic orbit. Figure 3.8 shows level curves H(x1, x2) = H(x∗1,0) for various

values of p. The double heteroclinic connection can be calculated directly using

Proposition 3.3.1 and solving x∗1 + p̄∗ = p for p.

Proposition 3.4.2. There exists a singular double heteroclinic connection in the

FitzHugh-Nagumo equation for s = 0 and p ≈ −0.246016= p∗.

Techniques developed in [103] show that the singular homoclinic orbits ex-

isting for s = 0 and p ∈ (p∗, p−) must persist for perturbations of small positive

wave speed and sufficiently small ǫ. These orbits are associated to the lower

branch of the C-curve. The expected geometry of the orbits is indicated by their

shape in the singular limit shown in Figure 3.8. The double heteroclinic con-

nection is the boundary case between the upper and lower half of the C-curve.

It remains to analyze the singular limit for the upper half. In this case, a sin-

gular homoclinic orbit is again formed by following the unstable manifold of xl

when it coincides with the equilibrium q = (x∗1,0, x
∗
1) but now we check whether

it forms a heteroclinic orbit with the stable manifold of xr. Then we follow the

slow flow on Cr and return on a heteroclinic connection to Cl for a different y-

coordinate with y > x∗1 and y < c(x1,+) = f (x1) + p. From there we connect back

via the slow flow. Using the numerical method described in Section 3.3.2 we

first set y = x∗1; note that the location of q depends on the value of the parameter

p. The task is to check when the system

x′1 = x2

x′2 =
1
5

( f (x1) + y − p) (3.22)

has heteroclinic orbits from Cl to Cr with y = x∗1. The result of this computa-

tion is shown in Figure 3.9 as the red curve. We have truncated the result at

p = −0.01. In fact, the curve in Figure 3.9 can be extended to p = p∗. Obviously
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we should view this curve as an approximation to the upper part of the C-curve.
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Figure 3.9: Heteroclinic connections for equation (3.22) in parameter
space. The red curve indicates left-to-right connections for
y = x∗1 and the blue curves indicate right-to-left connections
for y = x∗1 + v with v = 0.125,0.12,0.115(from top to bottom).

If the connection from Cr back to Cl occurs with vertical coordinate x∗1 + v, it

is a trajectory of system (3.22) with y = x∗1 + v. Figure 3.9 shows values of (p, s)

at which these heteroclinic orbits exist for v = 0.125,0.12,0.115. An intersection

between a red and a blue curve indicates a singular homoclinic orbit. Further

computations show that increasing the value of v slowly beyond 0.125 yields

intersections everywhere along the red curve in Figure 3.9. Thus the values of

v on the homoclinic orbits are expected to grow as s increases along the upper

branch of the C-curve. Since there cannot be any singular homoclinic orbits

for p ∈ (p−, p+) we have to find the intersection of the red curve in Figure 3.9

with the vertical line p = p−. Using the numerical method to detect heteroclinic

connections gives:

Proposition 3.4.3. The singular homoclinic curve for positive wave speed terminates

at p = p− and s ≈ 1.50815= s∗ on the right and at p = p∗ and s = 0 on the left.
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In (p, s)-parameter space define the points:

A = (p∗,0), B = (p−,0), C = (p−, s
∗) (3.23)

In Figure 3.10 we have computed the homoclinic C-curve for values of ǫ be-

tween 10−2 and 5 · 10−5. Together with the singular limit analysis above, this

yields strong numerical evidence for the following conjecture:

Conjecture 3.4.4. The C-shaped homoclinic bifurcation curves converge to the union

of the segments AB and AC as ǫ → 0.

Remark 1: Figure 4 of Krupa, Sandstede and Szmolyan [82] shows a “wedge”

that resembles shown in Figure 3.10. The system that they study sets p = 0 and

varies a with a ≈ 1/2. For a = 1/2 and p = 0, the equilibrium point q is located

at the origin and the fast subsystem with y = 0 has a double heteroclinic con-

nection at q to the saddle equilibrium (1,0,0) ∈ Cr. The techniques developed in

[82] use this double heteroclinic connection as a starting point. Generalizations

of the results in [82] might provide a strategy to prove Conjecture 3.4.4 rigor-

ously, a possibility that we have not yet considered. However, we think that

1-homoclinic orbits in the regime we study come in pairs and that the surface of

1-homoclinic orbits in (p, s, ǫ) space differs qualitatively from that described by

Krupa, Sandstede and Szmolyan.

Remark 2: We have investigated the termination or turning mechanism of

the C-curve at its upper end. The termination points shown in Figure 3.1 have

been obtained by a different geometric method. It relies on the observation that,

in addition to the two fast heteroclinic connections, we have to connect near

Cl back to the equilibrium point q to form a homoclinic orbit; the two hetero-

clinic connections might persist as intersections of suitable invariant manifolds
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Figure 3.10: Singular limit (ǫ = 0) of the C-curve is shown in blue and parts
of several C-curves for ǫ > 0 have been computed (red).

but we also have to investigate how the flow near Cl,ǫ interacts with the stable

manifold W s(q). These results will be reported elsewhere, but we note here that

pturn(ǫ)→ p−.

The numerical calculations of the C-curves for ǫ ≤ 10−3 are new. Numerical

continuation using the boundary value methods implemented in AUTO [33] or

MatCont [46] becomes very difficult for these small values of ǫ [18]. Even com-

puting with values ǫ = O(10−2) using boundary value methods is a numerically

challenging problem. The method we have used does not compute the homo-

clinic orbits themselves while it locates the homoclinic C-curve accurately in

parameter space. To motivate our approach consider Figure 3.11 which shows

the unstable manifold Wu(q) for different values of s and fixed p. We observe
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that homoclinic orbits can only exist near two different wave speeds s1 and s2

which define the parameters where Wu(q) ⊂ W s(Cl,ǫ) or Wu(q) ⊂ W s(Cr,ǫ). Figure

3.11 displays how Wu(q) changes as s varies for the fixed value p = 0.05. If s

differs from the points s1 and s2 that define the lower and upper branches of the

C-curve for the given value of p, then |x1| increases rapidly on Wu(q) away from

q. The changes in sign of x1 on Wu(q) identify values of s with homoclinic orbits.

The two splitting points that mark these sign changes are visible in Figure 3.11.

Since trajectories close to the slow manifolds separate exponentially away from

them, we are able to assess the sign of x1 unambiguously on trajectories close to

the slow manifold and find small intervals (p, s1 ± 10−15) and (p, s2 ± 10−15) that

contain the values of s for which there are homoclinic orbits.
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Figure 3.11: Strong “splitting”, marked by an arrow, of the unstable man-
ifold Wu(q) (red) used in the calculation of the homoclinic C-
curve for small values of ǫ. The critical manifold C0 is shown
in blue. The spacing in s is 0.05 for both figures.

The geometry of the orbits along the upper branch of the C-curve is obtained

by approximating it with two fast singular heteroclinic connections and parts of

the slow manifolds Cr,ǫ and Cl,ǫ ; this process has been described several times in

the literature when different methods were used to prove the existence of “fast
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waves” (see e.g. [63, 15, 69]).

3.5 Conclusions

Our results are summarized in the singular bifurcation diagram shown in Figure

3.12. This figure shows information obtained by a combination of fast-slow de-

compositions, classical dynamical systems techniques and robust numerical al-

gorithms that work for very small values of ǫ. It recovers and extends to smaller

values of ǫ the CU-structure described in [18] for the FitzHugh-Nagumo equa-

tion. The U-shaped Hopf curve was computed with an explicit formula, and the

homoclinic C-curve was determined by locating transitions between different

dynamical behaviors separated by the homoclinic orbits. All the results shown

as solid lines in Figure 3.12 have been obtained by considering a singular limit.

The lines AB and AC as well as the slow flow bifurcation follow from the singu-

lar limit ǫ → 0 yielding the fast and slow subsystems of the FitzHugh-Nagumo

equation (3.6). The analysis of canards and periodic orbits have been obtained

from equations (3.17) and (3.18) where the singular limit ǫ2 → 0 was used (see

Section 3.3.3). We have also shown the C- and U-curves in Figure 3.12 as dotted

lines to orient the reader how the results from Proposition 3.4.1 and Conjecture

3.4.4 fit in.

We also observed that several dynamical phenomena are difficult to recover

from the singular limit fast-slow decomposition. In particular, the codimension

two generalized Hopf bifurcation does not seem to be observable from the sin-

gular limit analysis. Furthermore the homoclinic orbits can be constructed from
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the singular limits but it cannot be determined directly from the fast and slow

subsystems that they are of Shil’nikov-type.

The type of analysis pursued here seems to be very useful for other mul-

tiple time-scale problems involving multi-parameter bifurcation problems. In

future work, we shall give a geometric analysis of the folding/turning mecha-

nism of the homoclinic C-curve, a feature of this system we have not been able

to determine directly from our singular limit analysis. That work relies upon

new methods for calculating Cl,ǫ and Cr,ǫ which are invariant slow manifolds of

“saddle-type” with both stable and unstable manifolds.

We end with brief historical remarks. The references cited in this paper dis-

cuss mathematical challenges posed by the FitzHugh-Nagumo equation, how

these challenges have been analyzed and their relationship to general ques-

tions about multiple time-scale systems. Along the line AB in Figure 3.12 we

encounter a perturbation problem regarding the persistence of homoclinic or-

bits that can be solved using Fenichel theory [103]. The point A marks the con-

nection between fast and slow waves in (p, s)-parameter space which has been

investigated in (ǫ, s)-parameter space in [82]. We view this codimension 2 con-

nectivity as one of the key features of the FitzHugh-Nagumo system. The per-

turbation problem for homoclinic orbits close to the line AC was solved using

several methods and was put into the context of multiple time-scale systems

in [68, 69], where the Exchange Lemma overcame difficulties in tracking Wu(q)

when it starts jumping away from Cr,ǫ . This theory provides rigorous founda-

tions that support our numerical computations and their interpretation.
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3.6 Additions

In Section 3.3.3 we considered the re-scaling x̄2 = x2/ǫ giving a system which

formally has two slow and one fast variable (3.14). Note that the slow flow of

(3.14) is another fast-slow system with one fast and one slow variable as shown

in Proposition 3.3.2. This suggests that there should exist a direct re-scaling that

converts the FHN equation into a three time-scale system [80, 81]. Consider the

FitzHugh-Nagumo equation on the fast time scale:

x′1 = x2

x′2 =
1
5

(sx2 − f (x1) + y − p) (3.24)

y′ =
ǫ

s
(x1 − y)

If we make the general re-scaling ansatz for (3.24) given by

(x1, x2, y, t, s, p) 7→ (ǫαX1, ǫ
βX2, ǫ

γY, ǫδT, ǫρS , ǫσP)

it is not difficult to derive algebraic equations for (α, β, γ, δ, ρ, σ) so that (3.24) has

a three-scale structure of the form:

X′1 = F1

ǫX′2 = F2 (3.25)

Y ′ = ǫG

for functions F1, F2 and G. This yields the next proposition.

Proposition 3.6.1. Consider the re-scaling

(x1, x2, y, t, s, p) 7→ (X1, ǫ
1/2X2, γY, ǫ−1/2T, ǫ−1/2S , P) (3.26)
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Then (3.24) transforms to a three time scale system of the form (3.25) i.e. X2 is the

fastest variable, X1 an intermediate variable and Y is the slow variable.

Proof. Plugging in (3.26) into (3.24) gives:

ǫ−(−1/2)X′1 = ǫ1/2X2

ǫ1/2−(−1/2)X′2 =
1
5

(ǫ1/2−1/2S X2 − f (X1) + Y − P) (3.27)

ǫ−(−1/2)Y ′ =
ǫ1+1/2

S
(X1 − Y)

The result now follows by straightforward algebraic simplification. �
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CHAPTER 4

PAPER II: “COMPUTING SLOW MANIFOLDS OF SADDLE-TYPE”

4.1 Abstract

Slow manifolds are important geometric structures in the state spaces of dy-

namical systems with multiple time scales. This paper introduces an algorithm

for computing trajectories on slow manifolds that are normally hyperbolic with

both stable and unstable fast manifolds. We present two examples of bifurcation

problems where these manifolds play a key role and a third example in which

saddle type slow manifolds are part of a traveling wave profile of a partial dif-

ferential equation. Initial value solvers are incapable of computing trajectories

on saddle-type slow manifolds, so the slow manifold of saddle-type (SMST) al-

gorithm presented here is formulated as a boundary value method. We take an

empirical approach here to assessing the accuracy and effectiveness of the algo-

rithm.

Remark: Copyright (c)[2009] Society for Industrial and Applied Mathematics.

Reprinted with permission. All rights reserved.

4.2 Introduction

Slow-fast vector fields have the form

ǫ ẋ = f (x, y, ǫ)

ẏ = g(x, y, ǫ) (4.1)
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with x ∈ Rm the vector of fast variables, y ∈ Rn the vector of slow variables and ǫ

a small parameter that represents the ratio of time scales. The pair (x, y) will be

denoted by z and the vector field will be written ż = F(z). Invariant slow man-

ifolds on which the motion of the system has speed that is O(1) are a common

feature of slow-fast systems. Nevertheless, simulation of these systems with ex-

plicit numerical integration algorithms is limited to time steps that are O(ǫ) due

to numerical instabilities. Indeed, trajectories often spend most of their time fol-

lowing attracting slow manifolds. Implicit “stiff” integration methods [61] com-

pute trajectories along the attracting slow manifolds, taking time steps that are

O(1) while avoiding the numerical instabilities of explicit methods. However,

no initial value solver will compute forward trajectories that evolve on non-

attracting slow manifolds because the geometric instability of these trajectories

is such that nearby initial conditions diverge from one another at exponential

rates commensurate with the fast time scale. Even an exact initial value solver

in the presence of round-off errors of magnitude δ will amplify this round-off

error to unit magnitude in a time that is O(−ǫ log(δ)). Trajectories on slow man-

ifolds that are repelling in all normal directions can be computed by reversing

time, but different strategies are needed to compute trajectories that lie on slow

manifolds of saddle type. This paper presents an algorithm that directly com-

putes accurate trajectories of slow manifolds of saddle-type. The most similar

work on computing these manifolds have been AUTO computations that con-

tinue families of trajectories to obtain portions of a saddle-type slow manifold.

Examples include a slow manifold that lies in the unstable manifold of a three

dimensional model of a cardiac pacemaker [79] and segments of homoclinic or-

bits in the model of FitzHugh-Nagumo traveling-waves [18] studied further in

Section 3.3 of this paper.
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The existence of normally hyperbolic slow manifolds is established by

Fenichel theory [42, 71]. The singular limit ǫ = 0 of system (4.1) is a differen-

tial algebraic equation with trajectories confined to the critical manifold S = S 0

defined by f = 0. At points of S where Dx f is a regular m×m matrix, the implicit

function theorem implies that S is locally the graph of a function x = h(y). This

equation yields the vector field ẏ = g(h(y), y,0) for the slow flow on S . The ge-

ometry is more complicated at fold points of S where Dx f is singular. It is often

possible to extend the slow flow to the fold points after a rescaling of the vector

field [51]. Fenichel proved the existence of invariant slow manifolds S ǫ where

all eigenvalues of Dx f have nonzero real parts. For ǫ > 0 small, these normally

hyperbolic slow manifolds are within an O(ǫ) distance from the critical mani-

fold S 0 and the flow on S ǫ converges to the slow flow on S 0 as ǫ → 0. Fenichel

theory is usually developed in the context of overflowing slow manifolds with

boundaries. Trajectories may leave these manifolds through their boundaries.

In this setting, slow manifolds are not unique, but the distance between a pair of

slow manifolds is “exponentially small,” i.e. of order O(exp(−c/ǫ)) for a suitable

positive c, independent of ǫ [71].

The next section of this paper presents the SMST (slow manifold of saddle-

type) algorithm. This section gives an estimate of the order of accuracy of the

algorithm, augmented by analysis of a linear system for which there are explicit

solutions of both the solutions of the differential equations and the boundary

value solver.

The third section of the paper presents numerical investigations of three ex-

amples:

1. A three-dimensional version of the Morris-Lecar model for bursting neu-
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rons that was used by David Terman in his analysis of the transition be-

tween bursts with different numbers of spikes [105, 90],

2. A three-dimensional system whose homoclinic orbits yield traveling-wave

profiles for the FitzHugh-Nagumo model [18],

3. A four-dimensional model of two coupled neurons studied by Gucken-

heimer, Hoffman and Weckesser [53].

Empirical tests of the precision of the algorithm are given for the Morris-Lecar

model.

4.3 The SMST Algorithm

This section describes a collocation method called the SMST algorithm for com-

puting slow manifolds of saddle-type in slow-fast systems. Collocation meth-

ods [21, 3, 30, 31] are a well established method for solving boundary value

problems. The algorithm described in this paper is not a new collocation

method [59, 48]: the subtlety lies in the formulation of a boundary value prob-

lem that yields discrete systems of equations with well-conditioned Jacobians.

The crucial part of the geometry is to specify boundary conditions for trajec-

tory segments on a slow manifold that yield well-conditioned discretizations.

Two issues that must be dealt with in formulating the algorithm are that (1) the

boundary conditions must determine a unique slow manifold in circumstances

where there is an entire “tube” of such manifolds, and (2) any pair of trajectories

that lie close to the slow manifold are “exponentially close” along most of their

length.
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A trajectory segment γ : [a, b] → Rm+n of system (4.1) is determined by its

initial point γ(a) or by another set of m + n boundary conditions. Our goal is

to compute trajectories that follow a slow manifold, but we do not know any

points on that manifold. What we do know is that trajectories approach a slow

manifold at a fast exponential rate and then diverge from the manifold at a fast

exponential rate. We find these trajectories as solutions to a two point bound-

ary value problem with boundary conditions at both γ(a) and γ(b) that constrain

the trajectory to follow the slow manifold except for short time segments near its

ends. The singular limit of the trajectories we seek are candidates γ0 that consist

of a fast initial segment approaching the critical manifold S along a strong sta-

ble manifold, followed by a slow segment along S , followed by a fast segment

that leaves S along a strong unstable manifold. For small ǫ > 0, we seek m + n

boundary conditions that determine a unique trajectory near the candidate. Ini-

tial conditions that do not lie in the strong stable manifold of a point p ∈ S will

diverge from the slow manifold S at a fast exponential rate. Therefore, trajecto-

ries that follow the slow manifold have initial conditions that are exponentially

close to the (unknown) stable manifold of S . If the boundary conditions at a

allow the initial point of γ to vary along a submanifold Bl that is transverse to

the stable manifold of S , then the solver can determine a point that lies close

enough to the stable manifold that it tracks S for the desired distance. Similarly,

when trajectories remain close to S for times that are O(1) on the slow time scale,

they remain exponentially close to the unstable manifold of S as they leave S .

Thus, the boundary conditions at b need to allow the solver to find points that

lie close to the unstable manifold of S . This condition will be satisfied if the

boundary conditions at b define a manifold Br that is transverse to the unstable

manifold of S . See Figure 4.1.
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Figure 4.1: Boundary conditions for the SMST algorithm are illustrated
with a three dimensional example with one slow and two fast
variables. The slow manifold of saddle type is drawn black
and labeled S . A trajectory that approaches the slow mani-
fold along a strong stable direction and departs along a strong
unstable manifold is drawn blue. The initial point of this tra-
jectory lies in a two dimensional manifold Bl transverse to the
stable manifold of S , and the final point lies in a one dimen-
sional manifold Br transverse to the unstable manifold of S .

To make the requirements on Br and Bl more concrete, let u be the dimen-

sion of the strong unstable manifolds of S and let Eu(p) and E s(p) be the strong

unstable and stable subspaces in Rm at a point p in the critical manifold S 0 of

system (4.1). Normal hyperbolicity asserts s+u = m. Fenichel Theory states that

the stable manifold of S ǫ will be close to E s(p) × TpS 0 at a nearby point q of S ǫ

with the same slow coordinates as p and the unstable manifold of S ǫ at q will be

close to Eu(p) × TpS 0. To formulate a well posed boundary value problem, we

want Bl to have dimension at least u and be transverse to the stable manifold of

S 0, while Br needs to have dimension at least s and be transverse to the unstable
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manifold of S 0. The dimensions of Bl and Br are complementary to the number

of boundary conditions: we can have no more than n + s boundary conditions

at a and no more than n + u boundary conditions at b. A trajectory segment on

the time interval [a, b] is determined by m + n boundary conditions, so we can

specify s ≤ k ≤ s+ n boundary conditions at a and u ≤ m+ n− k ≤ n+ u boundary

conditions at b. The n boundary conditions associated with the slow variables

can be split between a and b in an arbitrary manner. As an alternative, the time

length of the trajectory can be allowed to vary, and one more boundary condi-

tion can be imposed at one of the endpoints while maintaining transversality to

the stable and unstable manifolds of S 0.

In our tests of the SMST algorithm, we chose boundary conditions aligned

with the stable and unstable manifolds of the critical manifold S 0. We used

boundary conditions at a that define a manifold passing through a point p ∈

S 0 and containing Eu(p), while at b the boundary conditions define a manifold

passing through a point q ∈ S 0 and containing Eu(p). Normal hyperbolicity

implies that the transversality conditions are satisfied for small ǫ. We know

that p and q will be located at a distance O(ǫ) from the slow manifold, so the

initial and final segments of our computed trajectory that diverge from S ǫ will

have length O(ǫ). In addition to the boundary conditions, the algorithm takes a

(discretized) trajectory γ0 : [a, b] → S 0 of the slow flow with γ0(a) = p, γ0(a) = q

as input. With this input, we form a system of collocation equations whose

solution yields a better approximation to the desired trajectory that follows S ǫ .

Denote the mesh points in the discretization of [a, b] by a = t0 < t1 < · · · < tN =

b. There are a total of (N + 1)(m + n) variables, so we need that many equations

to determine an approximate trajectory that satisfies the boundary conditions
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from the input data. (If b − a is allowed to vary, then the number of boundary

conditions is increased by one.) From points z j = z(t j) ∈ Rm+n, a C1 cubic spline

σ is constructed with the z j as knot points and tangent vectors F(z j) at these

points. On the mesh interval [t j−1, t j], σ is a cubic curve whose coefficients are

linear combinations of z j−1, z j, F(z j−1), F(z j) that are readily determined. Each

of the N mesh intervals [t j−1, t j] contributes (m + n) equations to the system of

collocation equations by requiring that F(σ((t j−1 + t j)/2)) = σ′((t j−1 + t j)/2). The

values of σ and σ′ in these equations can be expressed as

σ(
t j−1 + t j

2
) =

z j−1 + z j

2
−

(t j − t j−1)(F(z j) − F(z j−1))

8
(4.2)

σ′(
t j−1 + t j

2
) =

3(z j − z j−1)

2(t j − t j−1)
−

F(z j) + F(z j−1)

4

The boundary conditions constitute the remaining m+n equations of the system.

The system of (N + 1)(m+ n) equations is solved with Newton’s method starting

with the data in γ0. The Jacobian of this system is computed explicitly, using

the derivatives of the equations (4.2) with respect to z j−1, z j. The solution of

the system gives a spline that satisfies the boundary conditions and satisfies

the differential equation ż = F(z) at the endpoints and midpoint of each mesh

interval.

Two types of error estimates are of interest for this algorithm. On each mesh

interval, there is a local error estimate for how much the spline σ differs from a

trajectory of the vector field. The spline satisfies σ′(t) = F(σ(t)) at the collocation

points t j−1, t j and (t j + t j−1)/2. If γ is the trajectory of the vector field through

one these points, this implies that σ − γ = O(|t j − t j−1|4). Since this classical es-

timate is based upon the assumption that the norm of the vector field is O(1),

it is only likely to hold for intervals that are short on the fast time scale and

trajectory segments that lie close to the slow manifold. Globally, the trajecto-
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ries of the flow display a strong separation due to the normal hyperbolicity. In

Fenichel coordinates [71], stable coordinates converge rapidly to the slow man-

ifold while unstable coordinates diverge rapidly from the slow manifold. In

the case of a one-dimensional slow manifold, shadowing [12] implies that any

pseudo-trajectory pieced together from local approximations to the flow will lie

close to a unique trajectory of the flow. Moreover, in this case, different choices

of boundary conditions that lie in the same strong stable manifold at a and the

same strong unstable manifold at b yield trajectories that are exponentially close

to each other and to the slow manifold outside of small subintervals near the

ends of the time interval [a, b]. Consequently, the value of F will be O(1) on

the slow time scale and the middle of the spline is expected to give an excellent

approximation to a trajectory on the slow manifold. Rather than pursuing more

careful theoretical analysis of the algorithm here, we calculate the errors for a

linear example in which the slow manifold and its numerical approximation

can be computed explicitly.

4.3.1 Slow manifolds of a linear system

Consider the linear vector field

ǫ ẋ1 = y − x1

ǫ ẋ2 = x2 (4.3)

ẏ = 1

Its general solution is

(x1, x2, y)(t) = (y(0)− ǫ + t + (x1(0)− y(0)+ ǫ) exp(−t/ǫ), x2(0) exp(t/ǫ), y(0)+ t)
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This explicit solution provides a benchmark for evaluating the accuracy of the

algorithm described above. The slow manifold of the system is the line {y =

x1 + ǫ, x2 = 0} containing the trajectories (x1, x2, y)(t) = (y(0)− ǫ + t,0, y(0)+ t).

The discretized equations of the algorithm can also be solved explicitly for

system (4.3). The first step in doing so is to observe that the equations for x1 and

y are separable from those for x2, and this remains the case for the discretized

equations of the boundary value solver. Substituting the equations for the y-

variable into the boundary value equations produces the equation y j+1 − y j =

t j+1 − t j on each mesh interval. If a boundary condition is imposed on one end

of the time interval [a, b], these equations yield a solution that is a discretization

of an exact solution of the differential equation. Convergence occurs in a single

step.

Assume now that y j+1 − y j = t j+1 − t j and set w j = y j − (x1) j − ǫ to be the

difference between the x1 coordinate of a point and a point of the slow manifold.

The boundary value equations become

δ2 − 6δǫ + 12ǫ2

8δǫ2
w j −

δ2
+ 6δǫ + 12ǫ2

8δǫ2
w j+1 = 0 (4.4)

for a uniform mesh with δ = y j+1−y j = t j+1− t j. The boundary conditions at t0 = a

must be transverse to the x1 coordinate axis which is E s. Therefore, we choose to

fix the value of x1 as the boundary condition at t0 = a. Note that these equations

are satisfied when the w j vanish, so if the value of x1 is y − ǫ at t0 = a, the w j

yield a discretization of the exact solution along the slow manifold. Solving the

equation (4.4) for w j+1 in terms of w j yields

w j+1 =
δ2 − 6δǫ + 12ǫ2

δ2 + 6δǫ + 12ǫ2
w j

Like the solutions of the differential equation, the values w j decrease exponen-

tially as a function of time. The ratio ρ j = w j+1/w j is a function of (δ/ǫ) whose
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Taylor expansion agrees with that of exp(−δ/ǫ) through terms of degree 4, and

its value always lies in the interval (0,1). Thus the solutions of the boundary

value equation converge geometrically toward the slow manifold along its sta-

ble manifold with increasing time. If the mesh intervals have length δ ≤ ǫ, then

the relative error of the decrease satisfies

0 <
ρ j( δǫ ) − exp(δ

ǫ
)

exp(δ
ǫ
)

< 0.0015

For large values of δ/ǫ, the solution is no longer accurate near t = a if the bound-

ary conditions do not satisfy y0 = (x1)0 + ǫ. A similar, but simpler argument

establishes that the solution of the discretized problem converges to the slow

manifold at an exponential rate with decreasing time from t = b. Thus, the

boundary value solver is stable and yields solutions that qualitatively resem-

ble the exact solution for all meshes when applied to this linear problem. In

particular, the solution of the discretized problem is exponentially close to the

slow manifold away from the ends of the time interval [a, b]. As the mesh size

decreases to zero, the algorithm has fourth-order convergence to the exact solu-

tion.

4.4 Numerical Examples

4.4.1 Bursting Neurons

This section on the Terman modification of the Morris-Lecar model appeared in

the original paper [55] but has been omitted here for brevity.
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4.4.2 Traveling Waves of the FitzHugh-Nagumo Model

The FitzHugh-Nagumo equation is a model for the electric potential u = u(x, τ)

of a nerve axon interacting with an auxiliary variable v = v(x, τ) (see [43],[94]):






















∂u
∂τ
= δ∂

2u
∂x2 + fa(u) − w + p

∂w
∂τ
= ǫ(u − γw),

(4.5)

where fa(u) = u(u−a)(1−u) and p, γ, δ and a are parameters. Assuming a traveling

wave solution with t = x + sτ to (4.5) we get:

u′ = v

v′ =
1
δ

(sv − fa(u) + w − p) (4.6)

w′ =
ǫ

s
(u − γw).

A homoclinic orbit of (4.6) corresponds to a traveling pulse solution in (4.5). An

analysis of (4.6) using numerical continuation has been carried out by Champ-

neys et al. [18]. They fixed the parameters a = 1
10, δ = 5, γ = 1 and investigated

bifurcations in (p, s)-parameter space. We shall fix the same values and hence

write f1/10(u) =: f (u). To bring (4.6) into the standard form (4.1) set x1 := u,

x2 := v, y := w and change to the slow time scale:

ǫ ẋ1 = x2

ǫ ẋ2 =
1
5

(sx2 − x1(x1 − 1)(
1
10
− x1) + y − p) =

1
5

(sx2 − f (x1) + y − p), (4.7)

ẏ =
1
s
(x1 − y)

We refer to (4.7) as “the” FitzHugh-Nagumo equation. Our goal is to use the

fast slow structure of (4.7) and the SMST algorithm to compute its homoclinic

orbits. The critical manifold S of the FitzHugh-Nagumo equation is the cubic

curve:

S = {(x1, x2, y) ∈ R
3 : x2 = 0, y = f (x1) + p =: c(x1)}. (4.8)
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The two local non-degenerate extrema of c(x1) yield the fold points of S . Denote

the local minimum by x1,− and the local maximum by x1,+. The critical manifold

S has three normally hyperbolic components:

S l = {x1 < x1,−} ∩ S , S m = {x1,− < x1 < x1,+} ∩ S , S r = {x1,+ < x1} ∩ S .

Fenichel’s theorem provides associated slow manifolds S l,ǫ , S m,ǫ and S r,ǫ outside

neighborhoods of the fold points. The manifolds S l,ǫ and S r,ǫ are of saddle-type

for ǫ sufficiently small. The middle branch S m,ǫ is completely unstable in the

fast directions. Denote the unique equilibrium point of (3.6) by q = (x∗1,0, x
∗
1).

The location of q depends on the parameter p, and q moves along the cubic

S . For the analysis of homoclinic orbits we shall assume that q ∈ S l,0. In this

case, the unstable manifold Wu(q) is one-dimensional and the stable manifold

W s(q) is two-dimensional. This also covers the case q ∈ S r by a symmetry in

the FitzHugh-Nagumo equation and avoids the region where q is completely

unstable [18, 56]. Homoclinic orbits exist if Wu(q) ⊂ W s(q).

We focus first on the case of relatively large wave speeds s (“fast waves”).

Existence of these homoclinic orbits has been proved for small enough ǫ, view-

ing them as perturbations of a singular trajectory consisting of four segments:

a fast subsystem heteroclinic connection from q to Cr at y = x∗1, a slow segment

on Cr, a fast subsystem heteroclinic from Cr to Cl at y = x∗1 + c for some constant

c = c(p, s) > 0 and a slow segment on Cl connecting back to q [69]. We aim

to compute homoclinic orbits by a similar procedure for a given small ǫ > 0 in

several steps:

1. Find parameter values (p0, s0) such that a homoclinic orbit exists very close

or exactly at (p0, s0). This can be achieved by a splitting algorithm without

107



computing the homoclinic orbit, even for very small values of ǫ [56]. Carry

out all the following computations for (p, s) = (p0, s0).

2. Compute the slow manifolds S ǫ,l and S ǫ,r using the SMST algorithm.

3. Compute the unstable manifold of the equilibrium Wu(q) by forward inte-

gration.

4. Define a section Σ = {x1 = c} where the constant c is chosen between x1,−

and x1,+ e.g. c = (x1,− + x1,+)/2. Compute the transversal intersection of

W s(S l,ǫ) and Wu(S r,ǫ) on Σ, call the intersection point xsu = (c, x2,su, ysu) (see

Figure 4.2). Integrate forward and backward starting at xsu to obtain tra-

jectories γ f w and γbw.

5. The homoclinic orbit is approximated by a concatenation of the trajectory

segments on Wu(q), S r,ǫ , Wu(S r,ǫ) ∩W s(S l,ǫ) and S l,ǫ computed in steps 1.-4.

The endpoints of these trajectory segments are exponentially close to one

another and therefore indistinguishable numerically.

All our figures for the fast wave case have been computed for ǫ = 10−3, p0 = 0

and s0 ≈ 1.2463. Jones et al. [69] proved the existence of homoclinic orbits in

this region for small ǫ. In Figure 4.3(a) we show the result from the SMST al-

gorithm and the unstable manifold of the equilibrium Wu(q), i.e. the output of

steps 2 and 3. Due to the exponential separation along S r,ǫ the trajectory Wu(q)

obtained from numerical integration cannot track the slow manifold for an O(1)

distance and escapes after following the slow manifold for a very short time.

This happens despite the fact that we have computed parameter values (p0, s0)

with maximal accuracy in double precision arithmetic at which we expect Wu(q)

to follow S r,ǫ almost up to the fold point x1,+. This observation is relevant to

Figure 4.3(b) where the result of step 5 is shown. All the fast segments (red)
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Figure 4.2: Illustration of transversal intersection of stable and unstable
manifolds of the slow manifolds W s(S l,ǫ) (green) and Wu(S r,ǫ)
(magenta). The manifolds are truncated at the yellow section
Σ and the trajectory γ f w ∪ γbw started on Σ at the transversal
intersection point xsu is shown in red.

had to be truncated almost immediately after they entered a neighborhood of

a slow manifold. The final output of the algorithm after interpolation near the

truncation points is shown in Figure 4.4.

Now we consider the case of “slow waves” and work with smaller wave

speeds s. Homoclinic orbits representing slow waves should be thought of as

perturbations of singular limit orbits for the FitzHugh-Nagumo equation (3.6)

with s = 0. In this case the fast subsystem

x′1 = x2

x′2 =
1
5

(− f (x1) + y − p) (4.9)

is Hamiltonian. Singular homoclinic orbits exist in a single fast subsystem with

the y-coordinate of the equilibrium y = x∗1. A direct application of Fenichel the-
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Figure 4.3: Illustration of the algorithm for computing homoclinic orbits
in the FitzHugh-Nagumo equation. (a)Slow manifolds S l,ǫ and
S r,ǫ are shown in black and the unstable manifold of the equilib-
rium Wu(q) is displayed in red. (b) Pieces of the homoclinic or-
bit; slow segments in black, fast segments in red and S shown
in blue.
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Figure 4.4: Homoclinic orbit (green) of the FitzHugh-Nagumo equation
representing a fast wave. The equilibrium point q is shown
in red.
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ory implies that a perturbed singular “slow” homoclinic orbit persists for ǫ > 0

[103]. Again it is possible to compute parameter values (p1, s1) at which ho-

moclinic orbits for ǫ > 0 exist [56]. To compute the orbits themselves a similar

approach as described above can be used. We have to track when Wu(q) enters

a small neighborhood of W s(S l,ǫ) respectively of S l,ǫ . Figure 4.5 shows two com-

puted homoclinic orbits for p1 = 0 and s1 ≈ 0.29491.
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Figure 4.5: Homoclinic orbits (green) representing slow waves in the
FitzHugh-Nagumo equation. The slow manifold S is shown in
blue and the equilibrium q in red. (a) “Single pulse” homoclinic
orbit. (b) “Double pulse” homoclinic orbit. This trajectory re-
turns to S l,ǫ before approaching S r,ǫ , then leaves S l,ǫ along its
repelling manifold, approaches S r,ǫ briefly and then returns to
S l,ǫ a second time, finally flowing along S l,ǫ back to q.

The orbits spiral around the middle branch and do not enter the vicinity of

S r,ǫ . This is expected as the middle branch S m of the critical manifold consists

of unstable spiral equilibria for the fast subsystems. The Hamiltonian analysis

for the case s = 0 shows that the singular slow homoclinic orbits do not come

close to S r for values of p approximately between −0.24 and 0.05 (see [56]). In

Figure 4.5(a) a homoclinic orbit enters the vicinity of the slow manifold S l,ǫ and
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returns directly to q. Figure 4.5(b) shows a homoclinic orbit that makes one

additional large excursion around S m,ǫ after it was close to S r,ǫ and then returns

to q; hence we refer to the orbit in 4.5(b) as a double-pulse homoclinic orbit.

The same double-pulse phenomenon exists for fast waves as well. In this case

the double-pulse orbit has no additional interaction with the middle branch S m

and therefore it is difficult to distinguish between different pulse types for fast

waves numerically and graphically as the second loop follows the first one very

closely.

4.4.3 A Model of Reciprocal Inhibition

This section on a 4D fast-slow model of coupled neurons appeared in the origi-

nal paper [55] but has been omitted here for brevity.

4.5 Conclusion

We have illustrated how slow manifolds of saddle type appear in the bifurca-

tion analysis of slow-fast systems. From the perspective of simulation via initial

value solvers, these manifolds are ephemeral objects. Different methods are

needed to compute them accurately. Heretofore, collocation and continuation

methods incorporated into the program AUTO [34] have been used to compute

periodic and homoclinic orbits in multiple time scale systems, but this approach

becomes increasingly difficult as one approaches the singular limit. Our expe-

rience [53] in using AUTO has been that increasingly fine meshes are required

to analyze stiff systems as the ratio of time scales becomes more extreme, es-
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pecially when the solutions of interest contain canards. Our investigations of

the FitzHugh-Nagumo model agree with this observation: AUTO appears to

have difficulty computing homoclinic or periodic orbits that contain a lengthy

segment along the slow manifold S r,ǫ like the one shown in Figure 4.4. There

has been little investigation of the limitations of boundary value methods in

computing trajectories that contain canards, but one possible reason might be

that trajectory segments which follow a slow manifold for different distances

are almost impossible to distinguish numerically. This paper approaches this

difficulty by introducing a two point boundary value solver that computes the

slow manifolds themselves. The solver is based upon a different collocation

scheme than the one used in AUTO. Though our method has worked better for

us than a few attempts to solve these problems with AUTO, we have performed

neither theoretical analysis or comparative numerical studies of stability and

convergence of different collocation methods in computing slow manifolds of

saddle-type. Such studies are interesting topics for further research. Here, we

only present evidence that the SMST algorithm is an effective, fast and accurate

method for computing slow manifolds in the systems that we studied. Our

solver works effectively with the examples presented in this paper, yielding

modest sized systems of equations that are solved with a few iterations of New-

ton’s method. Attracting and repelling manifolds of a slow manifold S with

the method are computed by numerical integration. In these numerical integra-

tions, we start with initial points that lie in the directions of eigenvectors of the

layer equations. Since these directions are almost tangent to the invariant man-

ifolds of S that we seek and nearby trajectories converge to the manifolds, we

think that the resulting surfaces are very good approximations to the manifolds.

Asymptotic expansions for trajectories in the attracting and repelling manifolds
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are complicated [107]: we expect that theoretical improvements in this part of

the computations would require great effort for marginal gains in accuracy.

The SMST algorithm can be incorporated into multiple shooting methods

for computing periodic and homoclinic orbits along the lines of those intro-

duced in Guckenheimer and Lamar [58]. The strategy used in these methods

is to define surfaces that separate the desired trajectory into segments that can

be stably computed by forward or backward numerical integration, or here with

the SMST algorithm. Computations of the homoclinic orbits in the FitzHugh-

Nagumo model are very complex. The decomposition of these homoclinic or-

bits into segments that can be computed with the SMST algorithm and with

numerical integration changes as one moves along the homoclinic curve in pa-

rameter space. Nonetheless, we can compute good approximations to the ho-

moclinic orbits along the entire curve with our methods.

Theoretical analysis of the SMST algorithm and exploration of variants have

hardly begun. As one possible variation, automatic differentiation methods that

compute Taylor polynomials of the vector field at mesh points could be used

to obtain discretized equations based upon Hermite interpolation with higher

degree splines, similar to the methods used by Guckenheimer and Meloon to

compute periodic orbits [59].

4.6 Additions

In addition to the boundary value solver described in Section 4.3 other ap-

proaches were tested. Several observations were made:
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(a) In the case when the slow flow is one-dimensional (y ∈ R) it seems to be

very helpful (possibly essential) to rescale the vector field:

x′ = f (x, y, ǫ)

y′ = ǫg(x, y, ǫ)

The slow flow will be normalized to unit speed ǫtg(x, y, ǫ) 7→ t̃ so that:

dx
dt̃
=

f (x, y, ǫ)
ǫg(x, y, ǫ)

dy
dt̃
= 1

Note that it remains a question for future work how to access the influence

of the re-scaling on the numerical method including the case of higher-

dimensional slow manifolds (y ∈ R
n, n > 1).

(b) The standard boundary value solvers in MatLab bvp4c and bvp5c [101]

do not seem to be able to solve the problem, although the same bound-

ary conditions and initial guess as for our scheme presented above were

used. Note that it is unclear whether this is a problem on the implemen-

tation, user or algorithmic side. In fact, for moderate values of ǫ = O(10−2)

we would expect that almost any standard 2-point boundary value solver

should be able to solve for a trajectory in the slow manifold manifold.

Furthermore a different strategy for the linear test problem (4.3) was imple-

mented in AUTO [34]. First we re-write the fast-slow system as z′ = F(z) where

z = (x, y) ∈ R
N and F = ( f , ǫg). Let T denote the final time of a trajectory and

re-scale t 7→ tT . Then we consider the following boundary value problem for
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t ∈ [0,1]:

z′ = T F(z)

H0(z(0)) = h0 (4.10)

H1(z(1)) = h1

with (h0, h1) ∈ R
N . The boundary conditions can be chosen as described in Sec-

tion 4.3. The problem (4.10) is in the standard form for computations with AUTO

using 2-parameter continuation with NICP=2 as NICP=NBC+NINT-NDIM+2;

see the AUTO manual for details [34]. Note that for (4.10) the final time T has be-

come a parameter. As a second parameter we parametrize the endpoint bound-

ary condition h1 = h1(α) with α ∈ R. The main idea of the method is illustrated

in Figure 4.6.

C0
C0

h0
h1(αT=0)

h1(αT>0)

(a) (b)

α

Cǫ

Figure 4.6: Boundary conditions are blue and red, the critical manifold C0

is black and the trajectory that lies (disregarding transients) in
the slow manifold is green. (a) The initialization step is shown.
The solution is identically constant for all t ∈ [0,1]. (b) The
primary continuation parameter α has been moved, T will in-
crease and a slow manifold piece is computed.

1. Initialize the constant solution z(0) = z(1) with T = 0 and αT=0 satisfying

the terminal boundary conditions.
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2. Use α as a primary continuation parameter moving the boundary condi-

tions.

3. Via 2-parameter continuation “grow” a solution segment in Cǫ .

4. The final value of α is chosen so that we get the boundary conditions as

described in Section 4.3.

One difference between the SMST algorithm presented previously and the

continuation approach is that for the latter we do not need to know an ini-

tial solution (i.e. the critical manifold). On the other hand we still need to

know enough about the geometry of the critical manifold to define h1(α) cor-

rectly which makes the two methods basically equivalent in terms of starting

conditions.
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CHAPTER 5

PAPER III: “HOMOCLINIC ORBITS OF THE FITZHUGH-NAGUMO

EQUATION: BIFURCATIONS IN THE FULL SYSTEM”

5.1 Abstract

This paper investigates traveling wave solutions of the FitzHugh-Nagumo

equation from the viewpoint of fast-slow dynamical systems. These solutions

are homoclinic orbits of a three dimensional vector field depending upon sys-

tem parameters of the FitzHugh-Nagumo model and the wave speed. Champ-

neys et al. [A.R. Champneys, V. Kirk, E. Knobloch, B.E. Oldeman, and J. Sneyd,

When Shil’nikov meets Hopf in excitable systems, SIAM Journal of Applied Dy-

namical Systems, 6(4), 2007] observed sharp turns in the curves of homoclinic

bifurcations in a two dimensional parameter space. This paper demonstrates

numerically that these turns are located close to the intersection of two curves in

the parameter space that locate non-transversal intersections of invariant man-

ifolds of the three dimensional vector field. The relevant invariant manifolds

in phase space are visualized. A geometrical model inspired by the numerical

studies displays the sharp turns of the homoclinic bifurcations curves and yields

quantitative predictions about multi-pulse and homoclinic orbits and periodic

orbits that have not been resolved in the FitzHugh-Nagumo model. Further

observations address the existence of canard explosions and mixed-mode oscil-

lations.

Remark: Copyright (c)[2010] Society for Industrial and Applied Mathematics.

Reprinted with permission. All rights reserved.

118



5.2 Introduction

This paper investigates the three dimensional FitzHugh-Nagumo vector field

defined by:

ǫ ẋ1 = x2

ǫ ẋ2 =
1
∆

(sx2 − x1(x1 − 1)(α − x1) + y − p) =:
1
∆

(sx2 − f (x1) + y − p) (5.1)

ẏ =
1
s

(x1 − y)

where p, s, ∆, α and ǫ are parameters. Our analysis views equations (5.1) as a

fast-slow system with two fast variables and one slow variable. The dynam-

ics of system (5.1) were studied extensively by Champneys et al. [18] with an

emphasis on homoclinic orbits that represent traveling wave profiles of a par-

tial differential equation [2]. Champneys et al. [18] used numerical continuation

implemented in AUTO [34] to analyze the bifurcations of (5.1) for ǫ = 0.01 with

varying p and s. As in their studies, we choose ∆ = 5, α = 1/10 for the numerical

investigations in this paper. The main structure of the bifurcation diagram is

shown in Figure 5.1.

Figure 5.1 shows a curve of Hopf bifurcations which is U-shaped and a curve

of Shil’nikov homoclinic bifurcations which is C-shaped. Champneys et al. [18]

observed that the C-curve is a closed curve which folds back onto itself before

it reaches the U-curve, and they discussed bifurcations that can “terminate” a

curve of homoclinic bifurcations. Their analysis does not take into account the

multiple-time scales of the vector field (5.1). This paper demonstrates that fast-

slow analysis of the homoclinic curve yields deeper insight into the events that

occur at the sharp turn of the homoclinic curve. We shall focus on the turning
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Figure 5.1: Bifurcation diagram for the FitzHugh-Nagumo equation (3.6).
Shil’nikov homoclinic bifurcations (solid red) and Hopf bifur-
cations (solid blue) are shown for ǫ = 0.01. The dashed curves
show the singular limit (ǫ = 0) bifurcation curves for the homo-
clinic and Hopf bifurcations; see [56] and Section 5.3 for details
on the singular limit part of the diagram.

point at the top end of the C-curve and denote this region by I.

We regard ǫ in the FitzHugh-Nagumo equation (5.1) as a small parameter.

In [56], we derived a singular bifurcation diagram which represents several im-

portant bifurcation curves in (p, s)-parameter space in the singular limit ǫ = 0.

The singular limits of the Hopf and homoclinic curves are shown in Figure 5.1

as dotted lines.1 In the singular limit, there is no gap between the Hopf and

homoclinic curves. We demonstrate below in Proposition 2.1 that a gap must

appear for ǫ > 0. The main point of this paper is that the termination point

of the C-curve at the end of the gap is due to a fast-slow “bifurcation” where

1In Section 5.3 we recall the precise meaning of the singular limit bifurcation from [56] and
how they these bifurcations arise when ǫ = 0.
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the two dimensional stable manifold of an equilibrium is tangent to the two di-

mensional unstable manifold of a one dimensional slow manifold.2 Since the

analysis of [18] does not explicitly consider slow manifolds of the system, this

tangency does not appear in their list of possibilities for the termination of a

C-curve. Note that the slow manifolds of the system are unique only up to “ex-

ponentially small” quantities of the form exp(−c/ǫ), c > 0, so our analysis only

identifies the termination point up to exponentially small values of the param-

eters.

Fast-slow dynamical systems can be written in the form

ǫ ẋ = ǫ
dx
dτ
= f (x, y, ǫ) (5.2)

ẏ =
dy
dτ
= g(x, y, ǫ)

where (x, y) ∈ R
m × R

n and ǫ is a small parameter 0 < ǫ ≪ 1. The functions

f : R
m × R

n × R → R
m and g : R

m × R
n × R → R

n are analytic in the systems

studied in this paper. The variables x are fast and the variables y are slow. We

can change (5.2) from the slow time scale τ to the fast time scale t = τ/ǫ, yielding

x′ =
dx
dt
= f (x, y, ǫ) (5.3)

y′ =
dy
dt
= ǫg(x, y, ǫ)

In the singular limit ǫ → 0 the system (5.2) becomes a differential-algebraic

equation. The algebraic constraint defines the critical manifold:

C0 = {(x, y) ∈ R
m × R

n : f (x, y,0) = 0}
2An analogous tangency plays an important role in the formation of mixed mode oscillations

associated with singular Hopf bifurcations in fast-slow systems with one fast and two slow
variables [52].
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For a point p ∈ C0 we say that C0 is normally hyperbolic at p if the all the eigen-

values of the m × m matrix Dx f (p) have non-zero real parts. A normally hyper-

bolic subset of C0 is an actual manifold and we can locally parametrize it by a

function h(y) = x. This yields the slow subsystem (or reduced flow) ẏ = g(h(y), y)

defined on C0. Taking the singular limit ǫ → 0 in (5.3) gives the fast subsystem

(or layer equations) x′ = f (x, y) with the slow variables y acting as parameters.

Fenichel’s Theorem [42] states that normally hyperbolic critical manifolds per-

turb to invariant slow manifolds Cǫ . A slow manifold Cǫ is O(ǫ) distance away

from C0. The flow on the (locally) invariant manifold Cǫ converges to the slow

subsystem on the critical manifold as ǫ → 0. Slow manifolds are usually not

unique for a fixed value of ǫ = ǫ0 but lie at a distance O(e−K/ǫ0) away from each

other for some K > 0; nevertheless we shall refer to “the slow manifold” for a

fast-slow system with the possibility of an exponentially small error being un-

derstood.

Section 5.3 discusses the fast-slow decomposition of the homoclinic orbits of

the FitzHugh-Nagumo equation in the region I. This decomposition has been

used to prove the existence of homoclinic orbits in the system for ǫ sufficiently

small [15, 63, 70, 69, 82], but previous work only applies to a situation where the

equilibrium point for the homoclinic orbit is not close to a fold point. At a fold

point the critical manifold of a fast-slow system is locally quadratic and not nor-

mally hyperbolic. This new aspect of the decomposition is key to understanding

the sharp turn of the homoclinic curve. Section 5.4 presents a numerical study

that highlights the geometric mechanism for the turning of the C-curve. We vi-

sualize relevant aspects of the phase portraits near the turns of the C-curve. In

Section 5.5 we show that exponential contraction of the Shil’nikov return map
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in the FitzHugh-Nagumo equation explains why n-homoclinic and n-periodic

orbits are expected to be found at parameter values very close to a primary 1-

homoclinic orbit. Section 5.6 presents two further observations. We identify

where a canard explosion [86] occurs and we note the existence of two different

types of mixed-mode oscillations in the system.

5.3 Fast-Slow Decomposition of Homoclinic Orbits

We introduce notation used in our earlier work [56]. The critical manifold of

(5.1) is given by:

C0 = {(x1, x2, y) ∈ R
3 : x2 = 0 and y = f (x1) + p}

It is normally hyperbolic away from the two fold points x1,± with x1,− < x1,+

which are found by solving f ′(x1) = 0 as the local minimum and maximum of

the cubic f . Hence C0 splits into three parts:

Cl = {x1 < x1,−} ∩C0, Cm = {x1,− ≤ x1 ≤ x1,+} ∩C0, Cr = {x1,+} ∩C0

We are mostly interested in the two branches Cl and Cr which are of saddle-type,

i.e. points in Cl and Cr are saddle equilibria of the fast subsystem. The middle

branch Cm − {x1,±} consists of unstable foci for the fast subsystem. The slow

manifolds provided by Fenichel’s Theorem will be denoted by Cl,ǫ and Cr,ǫ . The

notation for the two-dimensional stable and unstable manifolds of Cl,ǫ is W s(Cl,ǫ)

and Wu(Cr,ǫ) with similar notation for Cr,ǫ ; the notation for the associated linear

eigenspaces is e.g. E s(Cl,ǫ). The full system (5.1) has a unique equilibrium point

which we denote by q. For (p, s) ∈ I and ǫ = 0.01 the dimensions of the stable

and unstable manifolds are dim(Wu(q)) = 1 and dim(W s(q)) = 2 with a complex
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conjugate pair of eigenvalues for the linearization at q. The equilibrium q is

completely unstable inside the U-curve and the Hopf bifurcations we are inter-

ested in near I are all subcritical [56, 18].

As ǫ → 0 the Hopf bifurcation curve converges to a region in (p, s) parameter

space bounded by two vertical lines p = p± and the segment {s = 0, p− ≤ p ≤ p+};

see Figure 5.1. The parameter values p± are precisely the values when the equi-

librium point q coincides with the fold points x1,± [56]. This analysis gives one

part of the singular limit bifurcation diagram showing what happens to the

Hopf bifurcation curves for ǫ = 0.

(F1)

(S1)

(F2)

(S2)

C0

q

Figure 5.2: Sketch of a homoclinic orbit to the unique equilibrium q. Fast
(red) and slow (green) segments decompose the orbit into seg-
ments.

When ǫ is small, the homoclinic orbit in Wu(q)∩W s(q) can be partitioned into

fast and slow segments. The singular limit of this fast-slow decomposition has

four segments: a fast subsystem heteroclinic connection from q to Cr, a slow

segment on Cr, a heteroclinic connection from Cr to Cl and a slow segment back

to q on Cl; see Figure 5.2. Existence proofs for the homoclinic orbits [69, 63, 15]

are based upon analysis of the transitions between these segments. Trajecto-
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ries that remain close to a normally hyperbolic slow manifold must be “expo-

nentially close” to the manifold except for short segments where the trajectory

approaches the slow manifold along its stable manifold and departs along its

unstable manifold. Existence of the homoclinic orbit depends upon how the

four segments of its fast-slow decomposition fit together:

(F1) The one dimensional Wu(q) approaches Cr along its two dimensional stable

manifold W s(Cr,ǫ). Intersection of these manifolds cannot be transverse

and occurs only for parameter values that lie along a curve in the (p, s)

parameter plane.

(S1) The Exchange Lemma [68] was developed to analyze the flow map for tra-

jectories that approach Cr,ǫ along its stable manifold and depart Cr,ǫ along

its unstable manifold.

(F2) The fast jump from a neighborhood of Cr,ǫ to a neighborhood of Cl,ǫ occurs

along a transversal intersection of the two dimensional W s(Cl,ǫ) and two

dimensional Wu(Cr,ǫ).

(S2) The connection from Cl,ǫ to q lies close to an intersection of the two dimen-

sional Wu(Cl,ǫ) and the two dimensional W s(q). Previous analysis has dealt

with parameter regions where the connection (S2) exists and is transversal,

but it cannot persist up to the Hopf curve in the (p, s)-plane.

Proposition 5.3.1. There exists a region in (p, s)-parameter space near the Hopf U-

curve where no trajectories close to Cl,ǫ lie in W s(q).
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Proof. (Sketch) The Lyapunov coefficients of the Hopf bifurcations near I are

positive [56], so the periodic orbits emanating from these bifurcations occur in

the parameter region to the left of the Hopf curve. The periodic orbits are com-

pletely unstable. By calculating the eigenvalues of the linearization at the equi-

librium we find that there is no Fold-Hopf bifurcation on the Hopf curve near

I. Hence center manifold reduction implies that there will be a region of param-

eters near the Hopf curve where W s(q) is a topological disk whose boundary is

the periodic orbit. Close enough to the Hopf curve, W s(q) and the periodic orbit

lie at a finite distance from Cl,ǫ and there is no connection from Cl,ǫ to q. �

This proposition implies that the parameter region in which there is a con-

nection from Cl,ǫ to q is bounded away from the Hopf curve. The next section

shows that the boundary of this parameter region is very close to a curve along

which there are tangential intersections of Wu(Cl,ǫ) and W s(q).

Remark: As ǫ → 0, the C-curve converges to two lines (dashed red in Figure

5.1) defined by homoclinic and heteroclinic orbits of the fast subsystem [56]. The

horizontal segment of the C-curve to homoclinic orbits of the equilibrium point,

and the sloped segment to heteroclinic orbits from the equilibrium point to the

right branch of the critical manifold. Note that the C-curve terminates on the

Hopf curve in the singular limit. The singular limit analysis does not explain

the sharp turning of the C-curve for ǫ > 0 which is the focus of the next section.
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5.4 Interaction of Invariant Manifolds

The slow manifold Cl,ǫ is normally hyperbolic away from the fold point x1,−,

with one attracting direction and one repelling direction. We recently intro-

duced a method [55] for computing slow manifolds of saddle type. This algo-

rithm is used here to help determine whether there are connecting orbits from

a neighborhood of Cl,ǫ to the equilibrium point q. Our numerical strategy for

finding connecting orbits has three steps:

1. Choose the cross section

Σ0.09 = {(x1, x2, y) ∈ R
3 : y = 0.09}

transverse to Cl,ǫ ,

2. Compute intersections of trajectories in W s(q) with Σ0.09. These points are

found either by backward integration from initial conditions that lie in a

small disk D containing q in W s(q) or by solving a boundary value problem

for trajectories that have one end in Σ0.09 and one end on the boundary of

D.

3. Compute the intersection pl ∈ Cl,ǫ ∩ Σ0.09 with the algorithm described in

Guckenheimer and Kuehn [55] and determine the directions of the posi-

tive and negative eigenvectors of the Jacobian of the fast subsystem at pl.

Figure 5.3 shows the result of these computations for ǫ = 0.01, s = 1.37 and

three values of p.3 The intersections of W s(q) with Σ0.09 lies close to W s(Cl,ǫ).
3The second step above was carried out with two different initial value solvers, ode15s in

MatLab [100] and dop853 [61], and with AUTO [34] producing similar results.
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Table 5.1: Euclidean distance in (p,s)-parameter space between the Hopf
curve and the location of the tangency point between W s(q) and
Wu(Cl,ǫ).

ǫ D=d(tangency,Hopf)

10−2 ≈ 1.07ǫ

10−3 ≈ 1.00ǫ

10−4 ≈ 0.98ǫ

Backward trajectories flowing along Cl,ǫ converge to its stable manifold at a

fast exponential rate. This fact also explains the observation that W s(q) ∩ Σ0.09

makes a sharp turn. In Figure 5.3(a), it is apparent that the turn lies to the left

of Wu(Cl,ǫ) ∩ Σ0.09 and that W s(q) ∩ Wu(Cl,ǫ) is non-empty. In Figure 5.3(c), the

turn lies to the right of Wu(Cl,ǫ)∩Σ0.09. We have also computed the distance from

the Hopf curve of the parameters at which W s(q) and Wu(Cl,ǫ) appear to have a

tangential intersection for several different values of ǫ; see Table 5.1 from which

we observe that the distance is O(ǫ).

In Figure 5.3(d) the C-curve of homoclinic bifurcations (solid red) has been

computed using continuation in AUTO [34] as carried out by Champneys et al.

[18]. Despite the fact that no homoclinic orbit exists in part of the region I it is

possible to check whether the unstable manifold Wu(q) reaches a small neigh-

borhood of W s(Cr,ǫ). This idea has been used in a splitting algorithm [56] to

calculate where homoclinic orbits would occur if W s(q) would not move away

from Cl,ǫ as shown in Figures 5.3(a)-5.3(c). This yields the dashed red curve in
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(d) Parameter space, region I.

Figure 5.3: Figures (a)-(c) show the movement of the stable manifold W s(q)
(cyan) with respect to Eu(Cl,ǫ) (red) and E s(Cl,ǫ) (green) in phase
space on the section y = 0.09 for ǫ = 0.01. The parameter space
diagram (d) shows the homoclinic C-curve (solid red), an ex-
tension of the C-curve of parameters where Wu(q) ∩ W s(Cr,ǫ) is
nonempty, a curve that marks the tangency of W s(q) to Eu(Cl,ǫ)
(blue) and a curve that marks a distance between Cl,ǫ and W s(q)
(dashed blue) of 0.01where the arrows indicate the direction in
which the distance is bigger than 0.01. The solid black squares
in (d) show the parameter values for (a)-(c).

Figure 5.3(d). On this curve we verified that W s(Cl,ǫ) and Wu(Cr,ǫ) still intersect

transversally by computing those manifolds; see [56, 55] for details.

The blue curves in Figure 5.3(d) have been obtained by measuring the Eu-

clidean distances between W s(q) and Cl,ǫ in the section Σ0.09. Along the dashed

blue curve the distance between Cl,ǫ and W s(q) is 0.01. The arrows indicate the

direction in which this distance increases. The solid blue curve marks a tan-
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gency of W s(q) with Eu(Cl,ǫ). These calculations demonstrate that the sharp turn

in the C-curve of homoclinic bifurcations occurs very close to the curve where

there is a tangential intersection of W s(q) and Wu(Cl,ǫ). Therefore, we state the

following conjecture.

Conjecture 5.4.1. The C-curve of homoclinic bifurcations of the FitzHugh-Nagumo

system turns exponentially close to the boundary of the region where Wu(Cl,ǫ) ∩W s(q)

is nonempty.

Note that trajectory segments of types (F1), (S1) and (F2) are still present

along the dashed red curve in Figure 5.3(d). Only the last slow connection (S2)

no longer exists. Existence proofs for homoclinic orbits that use Fenichel’s The-

orem for Cl to conclude that trajectories entering a small neighborhood of Cl,ǫ

must intersect W s(q) break down in this region. The equilibrium q has already

moved past the fold point x1,− in I as seen from the singular bifurcation diagram

in Figure 5.1 where the blue dashed vertical lines mark the parameter values

where q passes through x1,±. Therefore Fenichel’s Theorem does not provide the

required perturbation of Cl,ǫ . Previous proofs [69, 63, 15] assumed p = 0 and the

connecting orbits of type (S2) do exist in this case.

Shil’nikov proved that there are chaotic invariant sets in the neighborhood of

homoclinic orbits to a saddle-focus in three dimensional vector fields when the

magnitude of the real eigenvalue is larger than the magnitude of the real part of

the complex pair of eigenvalues [102]. The homoclinic orbits of the FitzHugh-
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Nagumo vector field satisfy this condition in the parameter region I. Therefore,

we expect to find many periodic orbits close to the homoclinic orbits and pa-

rameters in I with “multi-pulse” homoclinic orbits that have several jumps con-

necting the left and right branches of the slow manifold [38]. Without making

use of concepts from fast-slow systems, Champneys et al. [18] described inter-

actions of homoclinic and periodic orbits that can serve to terminate curves of

homoclinic bifurcations. This provides an alternate perspective on identifying

phenomena that occur near the sharp turn of the C-curve in I. AUTO can be

used to locate families of periodic orbits that come close to a homoclinic orbit as

their periods grow.

Figure 5.4 shows several significant objects in phase space for parameters

lying on the C-curve. The homoclinic orbit and the two periodic orbits were

calculated using AUTO. The periodic orbits were continued in p starting from

a Hopf bifurcation for fixed s ≈ 1.3254. Note that the periodic orbit undergoes

several fold bifurcations [18]. We show two of the periodic orbits arising at

p = 0.05; see [18]. The trajectories in W s(Cl,ǫ) have been calculated using a mesh

on Cl,ǫ and using backward integration at each mesh point and initial conditions

in the linear approximation E s(Cl,ǫ).

We observe from Figure 5.4 that part of W s(q) lies near Cl,ǫ as expected for

(S2) to be satisfied. This is in contrast to the situation beyond the turning of

the C-curve shown in Figure 5.5 for p = 0.06 and s = 1.38. We observe that

W s(q) is bounded. Figure 5.5(a) shows two periodic orbits P1 and P2 obtained

from a Hopf bifurcation continuation starting for s = 1.38 fixed. P2 is of large
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C0

x1

x2

y

Cr,ǫ

W s(Cl,ǫ)

Cl,ǫ

W s(q)

Figure 5.4: Phase space along the C-curve near its sharp turn: the param-
eter values ǫ = 0.01, p = 0.05 and s ≈ 1.3254lie on the C-curve.
The homoclinic orbit (red), two periodic orbits born in the sub-
critical Hopf (blue), C0 (thin black), Cl,ǫ and Cr,ǫ (thick black)
are shown. The manifold W s(q) (cyan) has been truncated at a
fixed coordinate of y. Furthermore W s(Cl,ǫ) (green) is separated
by Cl,ǫ into two components shown here by dark green trajec-
tories interacting with Cm,ǫ and by light green trajectories that
flow left from Cl,ǫ .

amplitude and is obtained after the first fold bifurcation occurred. P1 is of small

amplitude and is completely unstable. A zoom near P1 in Figure 5.5(b) and a

time series comparison of a trajectory in W s(q) and P1 in Figure 5.5(c) show that

lim
α
{p : p ∈ W s(q) and p , q} = P1 (5.4)

where limα U denotes the α-limit set of some set U ⊂ R
m × R

n. From (5.4) we

can also conclude that there is no heteroclinic connection from q to P1 and only

a connection from P1 to q in a large part of the region I beyond the turning of

the C-curve. Since P1 is completely unstable, there can be no heteroclinic con-

nections from q to P1. Therefore, double heteroclinic connections between a
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Cr,ǫCl,ǫ
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(a) Sample phase space plot between the end of the C-curve and the U-curve.

P1

P2

γ

(b) Zoom for (a) near q.

−2000 −1000
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0.08

y
P1

γ

T

(c) Time series.

Figure 5.5: The parameter values are ǫ = 0.01, p = 0.06 and s = 1.38.
For (a) we display two periodic orbits (blue), one with a single
large excursion P2 and one consisting of a small loop P1. We
also show q (red dot), trajectories in W s(Cl,ǫ) (green) and W s(q)
(cyan). In (b) a zoom near q is shown and we made plotted a
single trajectory γ ∈ W s(q) (cyan). The plot (c) gives a time se-
ries of this trajectory γ in comparison to the periodic orbit P1.
Note that the trajectories are computed backward in time, so
the final points of the trajectories are on the left of the figure.
A phase shift of time along the periodic orbit would bring the
two time series closer.
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periodic orbit and q are restricted to periodic orbits that lie closer to the homo-

clinic orbit than P1. These can be expected to exist for parameter values near the

end of the C-curve in accord with the conjecture of Champneys et al. [18] and

the “Shilnikov”-model presented in the next section.

Remark: The recent manuscript [17] extends the results of [18] that moti-

vated this paper. A partial unfolding of a heteroclinic cycle between a hyper-

bolic equilibrium point and a hyperbolic periodic orbit is developed in [17].

Champneys et al. call this codimension two bifurcation an EP1t-cycle and the

point where it occurs in a two dimensional parameter space an EP1t-point.

The manuscript [17] does not conclude whether the EP1t-scenario occurs in the

FitzHugh-Nagumo equation. The relationship between the results of this paper

and those of [17] have not yet been clarified.

5.5 Homoclinic Bifurcations in Fast-Slow Systems

It is evident from Figure 5.3 that the homoclinic orbits in the FitzHugh-Nagumo

equation exist in a very thin region in (p, s)-parameter space along the C-curve.

We develop a geometric model for homoclinic orbits that resemble those in the

FitzHugh-Nagumo equation containing segments of types (S1), (F1), (S2) and

(F2). The model will be seen to be an exponentially distorted version of the

Shilnikov model for a homoclinic orbit to a saddle-focus [54]. Throughout this

section we assume that the parameters lie in a region I the region of the (p, s)-

plane close to the upper turn of the C-curve.
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The return map of the Shilnikov model is constructed from two components:

the flow map past an equilibrium point, approximated by the flow map of a lin-

ear vector field, composed with a regular map that gives a “global return” of

the unstable manifold of the equilibrium to its stable manifold [54]. Place two

cross-sections Σ1 and Σ2 moderately close to the equilibrium point and model

the flow map from Σ1 to Σ2 via the linearization of the vector field at the equilib-

rium.

C0

x1

x2

y

u

v

w0

F12

F21

R

Σ1

Σ2

ψ

Figure 5.6: Sketch of the geometric model for the homoclinic bifurcations.

Only parts of the sections Σi for i = 1,2 are shown.

The degree one coefficient of the characteristic polynomial at the equilibrium

has order O(ǫ), so the imaginary eigenvalues at the Hopf bifurcation point have

magnitude O(ǫ1/2). The real part of these eigenvalues scales linearly with the

distance from the Hopf curve. Furthermore we note that the real eigenvalue of

the equilibrium point remains bounded away from 0 as ǫ → 0.

Let ψ(x1, x2, y) = (u, v,w) be a coordinate change near q so that ψ(q) = 0 and

the vector field is in Jordan normal form up to higher order terms. We denote

the sections obtained from the coordinate change into Jordan form coordinates
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by Σ1 = ψ(Σ1) and Σ2 = ψ(Σ2); see Figure 5.6. Then the vector field is

u′ = −βu − αv

v′ = αu − βv + h.o.t. (5.5)

w′ = γ

with α, β, γ positive. We can choose ψ so that the cross-sections are Σ1 = {u =

0,w > 0} and Σ2 = {w = 1}. The flow map F12 : Σ1→ Σ2 of the (linear) vector field

(5.5) without higher-order terms is given by

F12(v,w) = vwβ/γ

(

cos

(

−α
γ

ln(w)

)

, sin

(

−α
γ

ln(w)

))

(5.6)

Here β and α tend to 0 as ǫ → 0. The domain for F12 is restricted to the interval

v ∈ [exp(−2πβ/α),1] bounded by two successive intersections of a trajectory in

W s(0) with the cross-section u = 0.

The global return map R : Σ2 → Σ1 of the FitzHugh-Nagumo system is

obtained by following trajectories that have successive segments that are near

W s(Cr,ǫ) (fast), Cr,ǫ (slow), Wu(Cr,ǫ) ∩W s(Cl,ǫ) (fast), Cl,ǫ (slow) and Wu(Cl,ǫ) (fast).

The Exchange Lemma [68] implies that the size of the domain of R in Σ2 is a strip

whose width is exponentially small. As the parameter p is varied, we found nu-

merically that the image of R has a point of quadratic tangency with W s(q) at a

particular value of p. We also noted that Wu(q) crosses W s(Cr,ǫ) as the parameter

s varies [56]. Thus, we choose to model R by the map

(w, v) = F21(u, v) = (σv + λ2 − ρ2(u − λ1)
2, ρ(u − λ1) + λ3) (5.7)

for F21 where λ1 represents the distance of Wu(q) ∩ Σ2 from the domain of F21,

λ2 represents how far the image of F21 extends in the direction normal to W s(q),
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λ3 is the v coordinate of F21(λ1,0) and ρ−1, σ are O(e−K/ǫ) for suitable K > 0. We

assume further that the domain of F21 is [λ1, λ1+ ρ
−1] × [−1,1]. Figure 5.7 depicts

F21. With these choices, we observe two properties of the C-curve of homoclinic

orbits in the geometric model:

1. If σv + λ2 − ρ2(u − λ1)2 is negative on the domain of F21, then the image

of F21 is disjoint from the domain of F12 and there are no recurrent orbits

passing near the saddle point. Thus, recurrence implies that λ2 > −σ.

2. If λ2 > 0, then there are two values of λ1 for which the saddle-point has a

single pulse homoclinic orbit. These points occur for values of λ1 for which

the w-component of F21(0,0) vanishes: λ1 = ±ρ−1|λ2|1/2. The magnitude of

these values of λ2 is exponentially small.

u

v
v

w

F21

Σ2 Σ1

W s(q)

Wu(q)
λ1

(λ2, λ3)

Figure 5.7: Sketch of the map F21 : Σ2 → Σ1. The (u, v) coordinates are
centered at Wu(q) and the domain of F21 is in the thin rectangle
at distance λ1 from the origin. The image of this rectangle is the

parabolic strip in Σ2.

When a vector field has a single pulse homoclinic orbit to a saddle-focus

whose real eigenvalue has larger magnitude than the real part of the complex
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eigenvalues, Shilnikov [102] proved that a neighborhood of this homoclinic or-

bit contains chaotic invariant sets. This conclusion applies to our geometric

model when it has a single pulse homoclinic orbit. Consequently, there will be a

plethora of bifurcations that occur in the parameter interval λ2 ∈ [0, σ], creating

the invariant sets as λ2 decreases from σ to 0.

The numerical results in the previous section suggest that in the FitzHugh-

Nagumo system, some of the periodic orbits in the invariant sets near the ho-

moclinic orbit can be continued to the Hopf bifurcation of the equilibrium point.

Note that saddle-node bifurcations that create periodic orbits in the invariant

sets of the geometric model lie exponentially close to the curve λ2 = 0 that mod-

els tangency of W s(q) and Wu(Cl,ǫ) in the FitzHugh-Nagumo model. This obser-

vation explains why the right most curve of saddle-node bifurcations in Figure

7 of Champneys et al. [18] lies close to the sharp turn of the C-curve.

There will also be curves of heteroclinic orbits between the equilibrium point

and periodic orbits close to the C-curve. At least some of these form codimen-

sion two EP1t bifurcations near the turn of the C-curve as discussed by Champ-

neys et al. [18]. Thus, the tangency between W s(q) and Wu(Cl,ǫ) implies that there

are several types of bifurcation curves that pass exponentially close to the sharp

turn of the C-curve in the FitzHugh-Nagumo model. Numerically, any of these

can be used to approximately locate the sharp turn of the C-curve.
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5.6 Canards and Mixed Mode Oscillations

This section reports two additional observations about the FitzHugh-Nagumo

model resulting from our numerical investigations and analysis of the turning

of the C-curve.

5.6.1 Canard Explosion

The previous sections draw attention to the intersections of W s(q) and Wu(Cl,ǫ) as

a necessary component for the existence of homoclinic orbits in the FitzHugh-

Nagumo system. Canards for the backward flow of this system occur along

intersections of Wu(Cl,ǫ) and Cm,ǫ . These intersections form where trajectories

that track Cl,ǫ have continuations that lie along Cm,ǫ which has two unstable fast

directions. We observed from Figures 5.4 and 5.5 that a completely unstable

periodic orbit born in the Hopf bifurcation on the U-curve undergoes a canard

explosion, increasing its amplitude to the size of a relaxation oscillation orbit

upon decreasing p. This canard explosion happens very close to the intersec-

tions of Wu(Cl,ǫ) and Cm,ǫ .

To understand where this transition starts and ends we computed the mid-

dle branch Cm,ǫ of the slow manifold by integrating backwards from points be-

tween the fold points x1,− and x1,+ starting close to Cm,0 and determined which

side of Wu(Cl,ǫ) these trajectories came from. The results are shown in Figure 5.8.

The dashed green curve divides the (p, s) plane into regions where the trajectory

that flows into Cm,ǫ lies to the left of Wu(Cl,ǫ) and is unbounded from the region
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(a) (p, s)-space: Black circles correspond to two portraits in
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Figure 5.8: The dashed green curve indicates where canard orbits start to
occur along Cm,ǫ . For values of p to the left of the dashed green
curve we observe that orbits near the middle branch escape in
backward time (upper panel in (b)). For values of p to the right
of the dotted green curve trajectories near Cm,ǫ stay bounded in
backward time.

where the trajectory that flows into Cm,ǫ lies to the right of Wu(Cl,ǫ) and comes

from the periodic orbit or another bounded invariant set. This boundary was

found by computing trajectories starting on Cm,0 backward in time. In backward

time the middle branch of the slow manifold is attracting, so the trajectory first

approaches Cm,ǫ and then continues beyond its end when x1 decreases below

x1,−. Figure 5.8(b) illustrates the difference in the behavior of these trajectories

on the two sides of the dashed green curve. Figure 5.8 shows that the param-

eters with canard orbits for the backward flow have smaller values of p than

those for which W s(q) and Wu(Cl,ǫ) have a tangential intersection. The turns of

the C-curve do not occur at parameters where the backward flow has canards.
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5.6.2 Mixed-Mode Oscillations

Mixed-mode oscillations (MMOs) have been observed in many fast-slow sys-

tems; see e.g. [92, 98, 99, 52]. MMOs are periodic orbits which consist of se-

quences of small and large amplitude oscillations. The notation Ls is used to

indicate an MMO with L large and s small oscillations.
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Figure 5.9: Some examples of mixed-mode oscillations in the FitzHugh-
Nagumo equation. Fixed parameter values are ǫ = 0.01 and
s = 1. Note that the period of the orbits has been rescaled to 1
in (b) and (d).

The FitzHugh-Nagumo equation (5.1) exhibits MMOs: the periodic orbits

close to the homoclinic orbit make small oscillations near the equilibrium point

in addition to large amplitude relaxation oscillations. A 11 MMO is shown in
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Figure 5.9(a)-(b). It was obtained by switching from the homoclinic C-curve to a

nearby curve of periodic orbits in a continuation framework. Note that the exis-

tence of multi-pulse homoclinic orbits near a Shilnikov homoclinic orbit [45, 38]

implies that much more complicated patterns of MMOs also exist near the ho-

moclinic C-curve. Ls MMOs with very large L and s near the homoclinic C-curve

are theoretically possible although observing them will be very difficult due to

the exponential contraction described in Section 5.5.

In addition to the MMOs induced by the Shilnikov bifurcation we also find

MMOs which exist due to orbits containing canard segments near the com-

pletely unstable slow manifold Cm,ǫ . An example of a 41 MMO is shown in

Figure 5.9(c)-(d) obtained by continuation. In this case the small oscillations

arise due to small excursions reminiscent to MMOs in three-time scale systems

[67, 81]. MMOs of type L1 with L = 1,2,3, . . . ,O(102) can easily be observed from

continuation and we expect that L1 MMOs exist for any L ∈ N. It is likely that

these MMOs can be analyzed using a version of the FitzHugh-Nagumo equa-

tion containing O(1), O(ǫ) and O(ǫ2) terms similar to the one introduced in [56]

but we leave this analysis for future work.

Figure 5.9 was obtained by varying p for fixed values of ǫ = 0.01 and s = 1.

Thus, varying a single parameter suffices to switch between MMOs whose small

amplitude oscillations have a different character. In the first case, the small am-

plitude oscillations occur when the orbit comes close to a saddle focus rotating

around its stable manifold, while in the second case, the trajectory never ap-

proaches the equilibrium and its small amplitude oscillations occur when the
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trajectory flows along the completely unstable slow manifold Cm,ǫ . Different

types of MMOs seem to occur very frequently in single- and multi-parameter bi-

furcation problems; see [27] for a recent example. This contrasts with most work

on the analysis of MMOs [76, 98] that focuses on identifying the mechanism

for generating MMOs in an example. The MMOs in the FitzHugh-Nagumo

equation show that a fast-slow system with three or more variables can exhibit

MMOs of different types and that one should not expect a priori that a single

mechanism suffices to explain all the MMO dynamics.

5.7 Additions

We will give some additional details of the computations for the invariant man-

ifolds. The slow manifold Cl,ǫ is of saddle type. Hence a special algorithm is

needed to compute it. We used the boundary value approach (BVP) described

in [55] with boundary conditions well-away from the section

Σ0.09 = {(x1, x2, y) ∈ R
3 : y = 0.09}

near Cl. The computed piece of Cl,ǫ was then intersected with Σ0.09. At the in-

tersection point the linearization of (5.1) is used to compute the eigenspaces

E s(Cl,ǫ) and Eu(Cl,ǫ). The stable manifold W s(q) was computed by considering a

line segment L ⊂ E s(q) close to q such that

{φt(L), t → ∞} ∪ {φt(L), t → −∞} ≈ W s(q)

where φt denotes the flow of (5.1). Choosing a mesh on L we can use backward

integration to trace out trajectories in W s(q) that intersect Σ0.09. These intersec-

tions have been recorded and give W s(q) in Figure 5.3(a)-5.3(c). The integration
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was carried out with the stiff solver ode15s in MatLab [100]. Since the distance

between y = 0.09and the equilibrium point q is moderate and trajectories do not

travel a long time near a slow manifold this approach works but we also used a

BVP calculation in AUTO [34] to verify the calculations. For the BVP calculation

the integration time T is a free parameter and we consider the BVP

u′(t) = T F(u(t)) with t ∈ [0,1] (5.8)

u(0) = µv with v ∈ E s(q) (5.9)

(u(1))3 = yend with yend ∈ R (5.10)

where µ and yend are a free parameters. The four boundary conditions (5.9)-

(5.10) describe a trajectory that starts in the eigenspace E s(q) and ends in a plane

y = yend. We start with µ sufficiently small and a constant solution µv with T = 0.

Varying yend as the main continuation parameter with second free parameter T

and keeping µ fixed we stop at yend = 0.09; see also [26]. Then we can free µ and

continue in µ and T to trace out the intersection W s(q) ∩ Σ0.09. This method con-

firmed the direct integration calculations; note that this type of BVP approach

is well-known and works well for small pieces of stable and unstable invariant

manifolds. More elaborate methods for complicated invariant manifolds exist

[77]. This completes the calculations for Figures 5.3(a)-5.3(c).
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CHAPTER 6

PAPER IV: “FROM FIRST LYAPUNOV COEFFICIENTS TO MAXIMAL

CANARDS”

6.1 Abstract

Hopf bifurcations in fast-slow systems of ordinary differential equations can be

associated with surprising rapid growth of periodic orbits. This process is re-

ferred to as canard explosion. The key step in locating a canard explosion is

to calculate the location of a special trajectory, called a maximal canard, in pa-

rameter space. A first-order asymptotic expansion of this location was found by

Krupa and Szmolyan [86, 85, 83] in the framework of a “canard point”-normal-

form for systems with one fast and one slow variable. We show how to compute

the coefficient in this expansion using the first Lyapunov coefficient at the Hopf

bifurcation thereby avoiding use of this normal form. Our results connect the

theory of canard explosions with existing numerical software, enabling easier

calculations of where canard explosions occur.

Remark: Copyright (c)[2010] Submitted to: International Journal of Bifurca-

tion and Chaos.
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6.2 Introduction

Our framework in this paper is the theory of fast-slow ordinary differential

equations (ODEs):

ǫ ẋ = ǫ
dx
dτ
= f (x, y, λ, ǫ) (6.1)

ẏ =
dy
dτ
= g(x, y, λ, ǫ)

where (x, y) ∈ R
m ×R

n, λ ∈ R is viewed as a parameter and ǫ is sufficiently small,

i.e. 0 < ǫ ≪ 1. The functions f : R
m×R

n×R×R→ R
m and g : R

m×R
n×R×R→ R

n

are assumed to be at least C3 in this paper. The variables x are fast and the vari-

ables y are slow. An introduction to the theory of fast-slow systems from the

geometric viewpoint can be found in [1, 71, 49], asymptotic methods are devel-

oped in [93, 47] and ideas from nonstandard analysis are considered in [28]. We

will only use geometric and asymptotic methods here.

In the singular limit ǫ → 0 the system (6.1) becomes a differential-algebraic

equation. The algebraic constraint defines the critical manifold:

C0 = {(x, y) ∈ R
m × R

n : f (x, y, λ,0) = 0}

For a point p ∈ C0 we say that C0 is normally hyperbolic at p if all the eigenval-

ues of the m ×m matrix Dx f (p) have non-zero real parts. A normally hyperbolic

subset of C0 is an actual manifold and we can locally parametrize it by a map

ψ(y) = x. This yields the slow subsystem (or reduced flow) ẏ = g(ψ(y), y, λ,0)

defined on C0.

Changing in (6.1) from the slow time scale τ to the fast time scale t = τ/ǫ
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yields:

x′ =
dx
dt
= f (x, y, λ, ǫ) (6.2)

y′ =
dy
dt
= ǫg(x, y, λ, ǫ)

Taking the singular limit ǫ → 0 in (6.2) gives the fast subsystem (or layer equa-

tions) x′ = f (x, y, λ,0) with the slow variables y acting as parameters. A point

p ∈ C0 is an equilibrium of the fast subsystem. We call a subset S ⊂ C0 an

attracting critical manifold if all points p on it are stable equilibria of the fast

subsystem i.e. all eigenvalues of Dx f (p) have negative real parts. The subset

S ⊂ C0 is called a repelling critical manifold if for all p ∈ S at least one eigen-

value of Dx f (p) has positive real part.

Fenichel’s Theorem [42] states that normally hyperbolic critical manifolds

perturb to invariant slow manifolds Cǫ . A slow manifold Cǫ is O(ǫ) distance

away from C0. The flow on the (locally) invariant manifold Cǫ converges to the

slow subsystem on the critical manifold as ǫ → 0. Slow manifolds are usually

not unique for a fixed value of ǫ = ǫ0 but lie at a distance O(e−k/ǫ0) away from

each other for some k > 0; nevertheless we shall refer to “the slow manifold”

associated to subset of the a critical manifold with the possibility of an expo-

nentially small error being understood.

Suppose the critical manifold can be divided into two subsets S a and S r

where S a is attracting and S r is repelling so that C0 = S a ∪ L ∪ S r. Here L de-

notes the part of C0 that is not normally hyperbolic. We assume that for p ∈ L

the matrix Dx f (p) has a single zero eigenvalue with right and left eigenvectors v

and w and that w ·Dxx(p)(v, v) and w ·Dy f (p) are non-zero. In this case points in L
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are called fold points. We can use the flow of (6.2) to extend the associated slow

manifolds S a,ǫ and S r,ǫ but the extensions might not be normally hyperbolic. The

key definition used in this paper is that a trajectory γ in the intersection of S a,ǫ

and S r,ǫ is called a maximal canard; note that this definition requires the exten-

sions of the slow manifolds under the flow. Observe that γ ⊂ S r,ǫ despite the fact

that S r,ǫ is repelling in the fast directions.

We are interested in the case when a fast-slow system undergoes a Hopf bi-

furcation and a maximal canard is formed close to this bifurcation. The periodic

orbits resulting from the Hopf bifurcation grow rapidly in a λ-interval of width

O(e−K/ǫ) for some k > 0. The rapid orbit growth is usually referred to as canard

explosion and the bifurcation scenario is called singular Hopf bifurcation.

The paper is organized as follows. In Section 6.3 we describe results on sin-

gular Hopf bifurcation and canard explosion obtained by Krupa and Szmolyan

[86]. In Section 6.4 we clarify the different definitions of the first Lyapunov co-

efficient of a Hopf bifurcation. In Section 6.5 we present the main results on

the relation between the location of the maximal canard and the first Lyapunov

coefficient. We describe which terms will contribute to the first order approxi-

mation using a rescaled Hopf bifurcation normal form. Then we show explicitly

how to compute a first order approximation to the location of the maximal ca-

nard avoiding additional center manifold reduction and normal form transfor-

mations. In Section 6.6 we locate the maximal canards in two examples: a two-

dimensional version of van der Pol’s equation and a three-dimensional version

of the FitzHugh-Nagumo equation.
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Note that we do not give a detailed description of dynamics associated to a

singular Hopf bifurcation and refer the reader to the previous extensive litera-

ture e.g. [4, 5, 13, 86, 52].

6.3 Canard Explosion

We describe the main results about canard explosion in fast-slow systems with

one fast and one slow variable from [86]. Consider a planar fast-slow system of

the form

x′ = f (x, y, λ, ǫ)

y′ = ǫg(x, y, λ, ǫ) (6.3)

where f , g ∈ Ck(R4,R) for k ≥ 3, λ ∈ R is a parameter and 0 < ǫ ≪ 1. Denote

the critical manifold of (6.3) by C0. We assume that C0 is locally parabolic with

a minimum at the origin (x, y) = (0,0) independent of λ so that (0,0) is a fold

point; more precisely

f (0,0, λ,0) = 0, fx(0,0, λ,0) = 0, fxx(0,0, λ,0) , 0, fy(0,0, λ,0) , 0 (6.4)

In addition, we assume that g(0,0, λ , 0,0) , 0; under these conditions the fold

point at the origin is generic for λ , 0. We assume without loss of generality

that fxx(0,0, λ,0) > 0 so that C0 is locally a parabola with a minimum at the

origin. Using (6.4) and the implicit function theorem we have that C0 is the

graph of a function y = φ(x) for φ : U → R where U is a sufficiently small

neighborhood of x = 0. Assume that C0 splits into an attracting and a repelling
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curve C = Cl ∪ {(0,0)} ∪Cr where

Cl = {x < 0, fx < 0} ∩C0, Cr = {x > 0, fx > 0} ∩C0
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Figure 6.1: (a) A generic fold for λ , 0. (b) A nondegenerate canard point
for λ = 0. The slow flow is indicated by single and the fast flow
by double arrows.

The situation is shown in Figure 6.1(a). Differentiating y = φ(x) with respect

to τ = tǫ we get that the slow flow on C0 is defined by

dx
dτ
= ẋ =

g(x, φ(x), λ,0)
φ′(x)

Note that the slow flow is singular for λ , 0 at (0,0) since φ′(0) = 0 and

g(0,0, λ,0) , 0. Assume that at λ = 0 we have a non-degenerate canard point

(see Figure 6.1(b)) so that in addition to the fold conditions we have

g(0,0,0,0) = 0, gx(0,0,0,0) , 0, gλ(0,0,0,0) , 0

Therefore the slow flow is well-defined at (0,0) for λ = 0 and we assume without

loss of generality that ẋ > 0 in this case. Near a non-degenerate canard point

(6.3) can be transformed into a normal form [83]:

x′ = −yh1(x, y, λ, ǫ) + x2h2(x, y, λ, ǫ) + ǫh3(x, y, λ, ǫ)

y′ = ǫ(xh4(x, y, λ, ǫ) − λh5(x, y, λ, ǫ) + yh6(x, y, λ, ǫ)) (6.5)
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where the functions hi are given by:

h3(x, y, λ, ǫ) = O(x, y, λ, ǫ)

h j(x, y, λ, ǫ) = 1+ O(x, y, λ, ǫ), j = 1,2,4,5

We define several computable constants, abbreviating (0,0,0,0) = 0 in the defi-

nitions:

a1 = (h3)x(0), a2 = (h1)x(0), a3 = (h2)x(0), a4 = (h4)x(0), a5 = (h6)x(0)

Note that all ai for i = 1,2,3,4,5 only depend on partial derivatives with respect

to x. Next we define another constant:

A = −a2 + 3a3 − 2a4 − 2a5

Theorem 6.3.1. (Krupa and Szmolyan [86]) For 0 < ǫ < ǫ0, |λ| < λ0 and ǫ0 > 0, λ0 >

0 sufficiently small and under the previous assumptions in this section there exists a

unique equilibrium point p for (6.5) in a neighborhood of (x, y) = (0,0). The equilibrium

p undergoes a Hopf bifurcation at λH with

λH = −
a1 + a5

2
ǫ + O(ǫ3/2) (6.6)

The slow manifolds Cǫ,l and Cǫ,r intersect/coincide in a maximal canard at λc for

λc = −
(a1 + a5

2
+

A
8

)

ǫ + O(ǫ3/2) (6.7)

The equilibrium p is stable for λ < λH and unstable for λ > λH. The Hopf bifurcation is

non-degenerate for A , 0, supercritical for A < 0 and subcritical for A > 0.

Remark: The asymptotic expansions for λH and λc are asymptotic series with

asymptotic sequence {ǫk/2}∞k=0 and Theorem 6.3.1 implies that the first two co-

efficients of the expansion are zero and the third coefficient can be computed
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explicitly.

Note that currently no standard bifurcation software such as AUTO [34] or

MatCont [46] computes the constants ai and A automatically. Nevertheless bi-

furcation software can detect Hopf bifurcations so that given a fixed ǫ we can

approximate λH numerically. Hence the numerical problem that remains is to

compute A since

λH − λc =
A
8
ǫ + O(ǫ3/2)

To simplify the notation we define K = A/8. If we know K we can easily ap-

proximate the location of the maximal canard by λc = λH − Kǫ + O(ǫ3/2). The

maximal canard organizes the canard explosion [86] and indicates where the

rapid amplitude growth of the small orbits generated in the Hopf bifurcation

occurs. Our goal is to avoid any additional normal form transformations and

center manifold reductions to compute K. The key point to achieve this is to

observe that K is just a rescaled version of “the” first Lyapunov coefficient of

the Hopf bifurcation at λH.

6.4 The First Lyapunov Coefficient

We review and clarify the interpretation, computation and conventions asso-

ciated with the first Lyapunov coefficient of a Hopf bifurcation. Consider a

general N-dimensional ODE at a non-degenerate Hopf bifurcation point. We

assume that the equilibrium has been translated to the origin so that

z′ = Mz + F(z), for z ∈ R
N (6.8)
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with F(z) = O(‖z‖2) and M = (mi j). Taylor expanding F yields

z′ = Mz +
1
2

B(z, z) +
1
6

C(z, z, z)

where the multilinear functions B and C are given by:

Bi(u, v) =
N

∑

j,k=1

∂2Fi(ξ)
∂ξ j∂ξk

∣

∣

∣

∣

∣

∣

ξ=0

u jvk

Ci(u, v,w) =
N

∑

j,k,l=1

∂3Fi(ξ)
∂ξ j∂ξk∂ξl

∣

∣

∣

∣

∣

∣

ξ=0

u jvkwl

The matrix M has eigenvalues λ1,2 = ±iω0 for ω0 > 0. Let q ∈ C
N be the eigenvec-

tor of λ1 and p ∈ C
N the corresponding eigenvector of the transpose MT i.e.

Mq = iω0q, Mq̄ = −iω0q̄, MT p = −iω0p, Mp̄ = iω0 p̄

where the the overbar denotes componentwise complex conjugation. We can

always normalize p so that the standard complex inner product with q satisfies

p̄T q =
∑N

j=1 p̄ jq j = 1. The first Lyapunov coefficient of the Hopf bifurcation can

then be defined by (Kuznetsov [88], p.180):

lKu
1 =

1
2ω0

(

p̄TC(q, q, q̄) − 2p̄T B(q, L−1B(q, q̄)) + p̄T B(q̄, (2iω0IN − M)−1B(q, q))
)

(6.9)

In the case of a two-dimensional vector field F = (F1, F2) the formula (6.9) can

be expressed in the simpler form (Kuznetsov [88], p.98):

lKu
1 =

1

2ω2
0

Re(ig20g11+ ω0g21) (6.10)

where

g20 = p̄T B(q, q), g11 = p̄T B(q, q̄), g21 = p̄TC(q, q, q̄)

It is important to note that lKu
1 is not uniquely defined until we choose a normal-

ization of the eigenvector q. We adopt the convention using unit norm q̄T q = 1.
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A slight modification of the formula (6.9) is used to evaluate the Lyapunov co-

efficient lMC
1 numerically in the bifurcation software MatCont [46]. Using the

current MatCont convention1 we note that

ω0lKu
1 = lMC

1

Other expressions for the first Lyapunov coefficient can be found in the litera-

ture. We consider only the planar case using simpler notation (z1, z2) = (x, y):
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(6.11)

Then another convention for l1 is (Chow, Li and Wang [19], p.211):

lCLW
1 =

m12

16ω4
0

[ω2
0[( fxxx + gxxy) + 2m22( fxxy + gxyy) − m21( fxyy + gyyy)]

−m12m22( f 2
xx − fxxgxy − fxygxx − gxxgyy − 2gxy)

−m21m22(g
2
yy − gyy fxy − gxy fyy − fxx fyy − 2 f 2

xy) (6.12)

+m2
12( fxxgxx + gxxgxy) − m2

21( fyygyy + fxy fyy)

−(ω2
0 + 3m2

22)( fxx fxy − gxygyy)]

where all evaluations in (6.12) are at (x, y) = (0,0). Next, assume that we have

applied a preliminary linear coordinate change
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where N : R
2→ R

2

to the system (6.11) to transform M into Jordan normal form. Then we look at:
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f ∗(u, v)

g∗(u, v)























(6.13)

1MatCont version 2.5.1 - December 2008
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In this case the Lyapunov coefficient formula simplifies (Guckenheimer and

Holmes [54], p.152):

lGH
1 =

1
16

[ f ∗xxx + f ∗xyy + g∗xxy + g∗yyy] +
1

16ω0
[ f ∗xy( f ∗xx + f ∗yy)

−g∗xy(g
∗
xx + g∗yy) − f ∗xxg

∗
xx + f ∗yyg

∗
yy] (6.14)

Note that the linear transformation N is not unique. We adopt the convention

that

N =























2Re(q1) −2Im(q1)

2Re(q2) −2Im(q2)























where q = (q1, q2) is the normalized eigenvector of the linearization L that satis-

fies Lq = iω0q. Another common definition for (6.13) is (Perko [96], p.353):

lPe
1 =

3π

4ω2
0

([ f ∗xy f ∗yy + f ∗yyg
∗
yy − f ∗xxg

∗
xx − g∗xyg

∗
xx − g∗xyg

∗
yy + f ∗xy f ∗xx]

+ω0[g
∗
yyy + f ∗xxx + f ∗xyy + g∗xxy]) (6.15)

The Hopf bifurcation theorem holds for any version of l1 as only the sign is

relevant in this case:

Theorem 6.4.1. (see e.g. [54, 88]) A non-degenerate Hopf bifurcation of (6.8) is su-

percritical if l1 < 0 and subcritical if l1 > 0.

Since we need not only a qualitative result such as Theorem 6.4.1, but a quan-

titative one relating the Lyapunov coefficient to canard explosion, it is necessary

to distinguish between the different conventions we reviewed above.
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6.5 Relating l1 and K

Krupa and Szmolyan consider a blow-up [86, 83, 85] of (6.5) given byΦ : S 3×I →

R
4 in a particular chart K2:

x = rx2, y = r2y2, λ = rλ2, ǫ = r2ǫ2 (6.16)

where r ∈ I ⊂ R and (x2, y2, λ2, ǫ2) ∈ S 3. Using (6.16) the resulting vector field

can be desingularized by dividing it by
√
ǫ. We shall not discuss the details of

the blow-up approach and just note that this transformation and the following

desingularization are simply a rescaling of the vector field given by:

x2 = ǫ
−1/2x, y2 = ǫ

−1y, λ2 = ǫ
−1/2λ, t2 = ǫ

1/2t (6.17)

Using the formula from Chow, Li and Wang [19] in the rescaled version of (6.5)

Krupa and Szmolyan get the following result:

Proposition 6.5.1. In the coordinates (6.17) the first Lyapunov coefficient l1 has asymp-

totic expansion:

l̄CLW
1 = K

√
ǫ + O(ǫ) (6.18)

where the overbar indicates the first Lyapunov coefficient in coordinates given by (6.17).

First, we want to explain in more detail which terms in the vector field (6.5)

contribute to the leading order coefficient K. The main problem is that the

Lyapunov coefficient is often calculated after an ǫ-dependent rescaling, such as

(6.17), has been carried out. This can lead to rather unexpected effects in which

terms contribute to the Lyapunov coefficient, as pointed out by Guckenheimer

[52] in the context of singular Hopf bifurcation in R
3.
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To understand how the rescaling (6.17) affects the Lyapunov coefficient we

consider the Hopf normal form case. We start with a planar vector field with

linear part in Jordan form (6.13). Assume that the equilibrium is at the origin

(x, y) = 0 and Hopf bifurcation occurs for λ = 0. Applying the rescaling (6.17)

we get:
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f ∗(
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1
ǫ3/2 g∗(

√
ǫx2, ǫy2)























(6.19)

In a fast-slow system with singular Hoof bifurcation we know that g∗(., .) = ǫ(. . .)

and that ω0 = O(
√
ǫ). Setting kω = ω0/

√
ǫ the Lyapunov coefficient can be com-

puted to leading order by (6.14):

l̄GH
1 =

1
kω

(

f ∗x2x2
(0,0)[g∗x2x2

(0,0)+ f ∗x2y2
(0,0)] + kω fx2x2x2(0,0)

) √
ǫ + O(ǫ) (6.20)

Equation (6.20) explains the leading-order behavior more clearly and shows that

due to the rescaling certain derivative terms in the Lyapunov coefficient for a

singular Hopf bifurcation are non-leading terms with respect to ǫ → 0. The

point is that the rescaling modifies the order with respect to ǫ of the linear and

nonlinear terms. Also, applying the chain rule to the nonlinear terms to calcu-

late the necessary derivatives can affect which terms contribute.

To make Proposition (6.5.1) more useful in an applied framework we have

computed all the different versions of the Lyapunov coefficient defined in Sec-

tion (6.4) up to leading order for equation (6.5) in original non-rescaled coordi-
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nates. The computer algebra system Maple [66] was used in this case:

lKu
1 =

4K
√
ǫ
+ O(

√
ǫ)

lMC
1 =

4Kω0√
ǫ
+ O(ω0

√
ǫ)

lGH
1 = K + O(ǫ) (6.21)

lCLW
1 = K + O(ǫ)

lPe
1 =

3πK
64ω0

+ O(ǫ/ω0)

Using the results (6.21) we now have a direct strategy how to analyze a canard

explosion generated in a singular Hopf bifurcation.

1. Compute the location of the Hopf bifurcation. This gives λH.

2. Find the first Lyapunov coefficient at the Hopf bifurcation, e.g. we get

lMC
1 ≈ 4Kω0/

√
ǫ.

3. Compute the location of the maximal canard, and hence the canard explo-

sion, by λc ≈ λH − Kǫ. For example, using MatCont we would get

λc ≈ λH −
lMC
1

4ω0
ǫ3/2 (6.22)

Observe that the previous calculation may require calculating the eigenvalues at

the Hopf bifurcation to determine ω0 but does not require any center manifold

calculations nor additional normal form transformations; these have basically

been encoded in the calculation of the Lyapunov coefficient.
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6.6 Examples

The first example is a version of van der Pol’s equation [23, 24, 86] given by:

x′ = y − x2 − x3

3

y′ = ǫ(λ − x)

We have to reverse time t → −t to satisfy the assumptions of Section (6.3). This

gives:

x′ = x2
+

x3

3
− y

y′ = ǫ(x − λ) (6.23)

The critical manifold is given by C0 = {y = x2
+ x3/3}with two fold points at (0,0)

and (−2,4/3). The fold points split the critical manifold into three normally

hyperbolic parts:

Cl = C0 ∩ {x < −2}, Cm = C0 ∩ {−2 < x < 0}, Cr = C0 ∩ {0 < x}

We only study the fold point at the origin which becomes a canard point for

λ = 0. The unique equilibrium point p = (xe(λ), ye(λ)) of (6.23) lies on C0 and

satisfies xe(λ) = λ. It is easy to check that subcritical Hopf bifurcation occurs for

λ = λH = 0. Matching terms in (6.23) and the normal form (6.5) we find:

h1 = h4 = h5 = 1, h2 = 1+
1
3

x, h6 = 0

Therefore K = 1/8 and we find analytically that the location of the maximal

canard representing the intersection of Cm,ǫ and Cr,ǫ is

λc = −(1/8)ǫ + O(ǫ3/2) (6.24)

A numerical continuation calculation using a bifurcation software tool - we used

MatCont [46] - gives that the first Lyapunov coefficient for the Hopf bifurcation
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at λ = λH = 0 for ǫ = 0.05 is

lMC
1 ≈ 0.4762

An easy calculation2 yields that ω0 ≈ 0.2236. Using (6.22) we compare this to the

result in equation (6.24) with ǫ = 0.05. Dropping higher-order terms we have:

λc(analytical) = −0.0063, λc(numerical using l1) = −0.0060 (6.25)

The coincidence of the values of the location of the maximal canard is already

quite good but this is expected since we have only compared the asymptotic

formula to the Lyapunov coefficient formula derived from it which was evalu-

ated numerically using continuation. A simple direct test to compare (6.25) to

the location of the maximal canard is to use continuation of periodic orbits from

the Hopf bifurcation point. The results are shown in Figure 6.2.

Remark: Depending on the bifurcation software used, direct continuation

of periodic orbits can fail for small values of ǫ. In this case special meth-

ods are needed to continue periodic orbits having canard segments; see e.g.

[58, 55, 27]. Note that locating Hopf bifurcations and calculating Lyapunov co-

efficients works well even for very small values of ǫ as we require only local

algebraic calculations.

We conclude from Figure 6.2 that our estimates in (6.25) are very good in-

dicators to determine where the canard explosion exists since they are already

decent for a relatively large ǫ = 0.05. In many standard fast-slow systems values

of ǫ ≤ 0.01 are commonly considered.

2Using MatCont 2.5.1. we can modify the file /matcont2.5.1/MultilinearForms/nf H.m
to return the variable omega= ω0 or to return lK

1 = lMC
1 /ω0.
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Figure 6.2: Continuation of periodic orbits emanating from the Hopf bi-
furcation at λ = 0. The parameter values for the red orbits are
λ = −0.001, −0.0025, −0.004, −0.005, −0.006, −0.0065and for all
the green orbits the parameter value is λ ≈ −0.006509indicat-
ing a canard explosion near this parameter value.

In higher dimensions the analytical calculations will be very difficult to carry

out. As a second example consider a version of the FitzHugh-Nagumo equation

[18, 56, 57]:

x′1 = x2

x′2 =
1
5

(sx2 − x1(x1 − 1)(0.1− x1) + y − I) (6.26)

y′ =
ǫ

s
(x1 − y)

where I and s are parameters. Equation (6.26) has two fast and one slow vari-

able and a unique equilibrium point p(I) = p. For a detailed fast-slow system

analysis describing the bifurcations we refer the reader to [56, 57]. We only note

that the critical manifold is cubic curve given by

C0 = {(x1, x2, y) ∈ R
3 : x2 = 0 and y = x1(x1 − 1)(0.1− x1) + I}

It is normally hyperbolic away from two fold points x1,± given by the local min-
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imum and maximum of the cubic. The equilibrium p passes through the fold

points under parameter variation; O(ǫ) away from these points the equilibrium

undergoes Hopf bifurcation [56, 57]. We shall just compute a particular case ap-

plying our result (6.21). We fix s = 1.37and observe that I plays the same role as

λ in our previous calculations. We calculated the location of the maximal canard

for several values of ǫ. The results are shown in Table 6.1.

Table 6.1: Comparison between the actual location of the maximal ca-
nard (canard explosion) Ic and the first-order approximation
Ic(Lyapunov) computed using the first Lyapunov coefficient at
the Hopf bifurcation.

ǫ Ic Ic(Lyapunov)

10−2 ≈ 0.0582046 ≈ 0.06308

5 · 10−3 ≈ 0.0545535 ≈ 0.05629

10−3 ≈ 0.0517585 ≈ 0.05196

5 · 10−4 ≈ 0.0514108 ≈ 0.05150

The second column of Table 6.1 shows the actual location Ic of the maximal

canard (canard explosion) obtained from continuation of periodic orbits using

AUTO [34]. The third column shows the approximation obtained by using the

first Lyapunov coefficient. The Lyapunov coefficient has been computed using

MatCont [46]. The error E(ǫ) of this calculation is of order O(ǫ3/2) as expected

from (6.18). Obviously the approximation improves for smaller values of ǫ.

In the case of ǫ = 0.01 it has been shown in [56, 57] that there is an intricate

bifurcation scenario involving homoclinic orbits in a parameter interval near Ic.
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The first order approximation of the maximal canard is not sufficient to relate

it to the homoclinic bifurcation. This shows that the magnitude of ǫ and other

relevant bifurcations in the system have to be taken into account carefully when

applying the results we presented here.

6.7 Discussion

We have investigated the relation between the first Lyapunov coefficient at a

singular Hopf bifurcation and the associated maximal canard orbit. The ma-

jor result is that no additional algorithms are needed to compute a first order

approximation to the location of the maximal canard. Standard bifurcation soft-

ware packages compute the Lyapunov coefficient and our results can be used to

approximate the maximal canard location from this numerical calculation.

We also pointed out that there is no “standard definition” of the first Lya-

punov coefficient of a Hopf bifurcation. This is not surprising since classical

qualitative bifurcation theory only requires the sign of the Lyapunov coefficient.

We hope that the comparison in Section 6.4 will help the reader to adapt their

own numerical algorithms and software packages to support the calculation of

maximal canard locations.

Open questions which we leave for future work include the extensions to

multiple slow variables, higher-order asymptotic expansions and the relation

between the Lyapunov coefficient and blow-up transformations.
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6.8 Additions

It is important to note that the idea presented here to find the maximal canard

via the first Lyapunov coefficient at the singular Hopf bifurcation can poten-

tially be very useful for analyzing mixed-mode oscillations (MMOs). This was

actually one of the motivations to find an explicit/computable formula as pre-

sented in Section 6.5. We shall consider a particular example to illustrate this

point.

Koper [76] studied a three-dimensional model of Van der Pol-Duffing-type

as a prototypical example for MMOs:

ǫ ẋ = ky − x3
+ 3x − λ

ẏ = x − 2y + z (6.27)

ż = (y − z)

where λ, k are parameters and we always assume 0 ≤ ǫ ≪ 1. We note that a two-

dimensional version of (6.27) was first studied by Boissonade and De Kepper

[10]. The first analysis of MMOs in the three-dimensional extended model was

carried out by Koper. Observe that the critical manifold obtained by setting

ǫ = 0 depends on k and λ. Usually it is more convenient to work with a fixed

critical manifold so we propose the coordinate change:

x→ x, y→ y + λ
k

, z→ z
k

(6.28)
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Applying (6.28) to (6.27) we obtain:

ǫ ẋ = y − x3
+ 3x

ẏ = kx − 2(y + λ) + z (6.29)

ż = (λ + y − z)

We start with the standard fast-slow analysis assuming ǫ2 = 1. The critical man-

ifold is

C0 = {(x, y, z) ∈ R
3|y = x3 − 3x =: c(x)}

The two fold curves are L± = {(x, y, z) ∈ R
3|x = ±1, y = ∓2}. This gives a decom-

position of CKop:

C0 = S a,− ∪ L− ∪ S r ∪ L+ ∪ S a,+

where S a,−
= C0 ∩ {x < −1}, S r

= C0 ∩ {−1 < x < 1} and S a,+
= C0 ∩ {1 < x} are

normally hyperbolic. Note that S a,± are attracting and S r is repelling.

Figure 6.3 shows a region in parameter space near a singular Hopf bifur-

cation curve and some of the associated stable MMOs that can be detected by

numerical integration. To understand the relation to the fast-slow structure and

the MMOs we also show the singular bifurcation curves of folded saddle-nodes

[104, 108] in Figure 6.3(a). The key observation from Figures 6.3(b)-(c) is that the

tangency between the slow manifold S r
ǫ and the unstable manifold manifold of

the unique equilibrium Wu(q) marks the boundary of the MMO regime in pa-

rameter space [52] i.e. the transition from small oscillations to MMOs.

The small-amplitude oscillations (SAOs) near the singular Hopf bifurcation

are generated by the saddle-focus q as discussed in [52]. The key point is that
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Figure 6.3: For all computations of the full system we have ǫ = 0.01and for
all time series we fixed k = −10. (a) Parameter space showing
curves of Hopf bifurcations (blue), folded saddle-nodes of type
II (red) and tangencies between S r

ǫ and Wu(q) (green). Note that
the distances between the curves are O(ǫ). The three black cir-
cles mark the parameter values for the time series in (b)-(d). (b)
Small amplitude oscillation of the limit cycle generated in the
Hopf bifurcation λ = −7.96. (c) MMO of type 1s with a very
large value of s near the tangency of invariant manifolds. (d)
MMO of type 1s with much smaller s.
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the location of the tangency between the manifolds S r
ǫ and Wu(q) can be derived

from the Lyapunov coefficient.

Conjecture 6.8.1. Proposition 6.5.1 also applies for systems with more than one slow

variable and the onset of MMOs can be calculated from the first Lyapunov coefficient

at the Hopf bifurcation. For example, formula (6.22) - or a minor modification of it - is

expected to hold.
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